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Abstract

This position paper is an attempt to enumerate and substantiate a number of key features, which, we be-
lieve, should be part of an expressive rule-based language to support the Semantic Web. This list of desiderata
is based on our experience with the implementation and use of the FLORA-2 system [11, 31] as well as on our
work on the languages for Semantic Web Services as part of the SWSL (http://www.daml.org/services/swsl)
and WSMO (http://www.wsmo.org) projects.



1 Introduction

Semantic Web has become one of the main foci of research in Al and knowledge representation and we have
already seen the first steps towards standardization of the representation of shareable knowledge on the Web.
The most notable of these standardized languages are RDF [20] and OWL [26]. At the same time, there is
growing sentiment that RDF and OWL are not the end of the story and the next big thing will be a Web rule
language. SWRL, a rule language extending OWL has recently been proposed [16], a rule language for RDF,
N3 [3], has been around for several years, and two rules languages, WSML-Rules [10] and SWSL-Rules [2], both
based on F-logic [18], have just been proposed as possible bases for Semantic Web Services.

Rule-based languages have been around for a long time, and for about seven years, in the 1980s, they had
their moment of glory, and Prolog was all the rage. Unfortunately, this first wave of heightened interest was
replaced with gloom and skepticism when the unrealistically high expectations of the breakthrough due to the
use of Prolog did not materialize. Our contention is that the root of the problem was not performance, as some
people outside of the field tend to think, but the fact that Prolog is neither declarative (despite all the claims)
nor high-level. In fact, as a rule language, it is relatively featureless—an assembler of the rule languages of the
world. As a result, it was very hard for an average programmer to learn how to write Prolog programs correctly
and even harder to squeeze performance out of them.

In this position paper we discuss progress that was made in the almost twenty years since Prolog fell out of
favor—progress that gives hope that the future rule language for the Semantic Web will be met more favorably.
We discuss the semantic and syntactic developments that can make a rule language more declarative and better
suited for knowledge representation. We do not discuss XML serialization of such a language—a complimentary
issue that is being addressed under the umbrella of the RuleML initiative [23].

2 Fixing the Semantics

From the very beginning, Prolog has been plagued with two semantic problems: its control strategy did not
match its presumed logical semantics and its treatment of negation as failure was ad hoc and logically flawed.
Both of these problems were solved in the late 80’s. The OLD resolution method [27] made the top-down
evaluation strategy logically complete and the Magic Sets method [1] made the bottom-up strategy more efficient.
In the 1990’s both of these methods were implemented in various systems. XSB [24] is the best-known such
system, which uses the modified OLD resolution in a top-down evaluation strategy. At least one other high-
performance system, the YAP Prolog! has a partial implementation of the same strategy. Unfortunately,
the Magic Sets-based bottom-up engines developed during the 1990’s, LDL, Coral, and Aditi, are no longer
supported.

The problem with negation as failure was also solved in late 1990’s. The two widely used solutions are based
on the so-called well-founded semantics for negation [29] and on the stable model semantics [12]. The well-
founded semantics has a nice property that it always has a unique model, and it is favored in logic programming
systems such as XSB and YAP. However, stable model semantics is more suitable for some other reasoning
tasks.

Another important related development was the introduction of classical negation alongside negation as
failure [13, 14]. This gives the advantage of being able to specify negative information directly in the knowledge
base, which can greatly simplify the specifications.

3 Frames: Making the Logic Object-Oriented

One of the widely recognized deficiency of logic-based languages (dating back to Minsky [22]) is the fact that
these languages are based on predicate calculus and thus on an essentially flat data model. To counter that,
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Minsky has argued that knowledge should be represented using frames [22] and, since (in his view) frames are
inherently non-logical, logic is inappropriate as a knowledge representation language. The same conclusion was
reached by Ullman later, although his argument was different [28].

Nevertheless, suitable logical formalisms have soon been proposed. One of the most popular such formalisms
is F-logic [18]. F-logic has been advocated as a logical way to provide a reasoning component on top of RDF,
for example, in the TRIPLE system [25] and in [30]. The upcoming member submissions from WSMO and
SWSI also use F-logic as the basis for their rule languages.

The basic logical formulas in F-logic are frames of the form mary[name->’Mary Jones’, children->
{bob,kathy}] and statements about class membership, such as mary:employee and subclass relationship, such
as employee: :person. These statements can be combined using logical connectives and the rules sublanguage
can be formed in the usual way. There are also facilities to make statements about types and more.

4 Meta-reasoning

One of the most attractive features of F-logic is that it has higher-order flavor and yet retains tractability. The
higher-order flavor comes from treating classes as objects and due to the ability to place variables virtually
anywhere. In this way, object data and meta-data can be queried uniformly. This seamless integration of object
data and meta-data paves the way for declarative meta-reasoning.

HilLog |7, 8] is a further extension in the direction of meta-reasoning. Developed in 1989, HiLog was
independently rediscovered in 1991 under the name of SKIF [15], which is a testimony for the robustness of
the idea. HiLog allows variables not only over method names or classes, but also over function and predicate
symbols, and over atomic formulas. For instance, the well-known built-in of Prolog, call, can be defined
completely logically in HiLog as follows:

call(?X) :- ?7X.

In this way, HiLog supports reification of atomic formulas. This idea was applied to F-logic and further extended
in [30]. HiLog goes even further by supporting parameterized families of predicates. For example, this makes it
possible to define the generic transitive closure of an arbitrary predicate (represented by the variable 7P) :

closure(?P) (?X,?Y) :— 7P(?X,7Y).
closure(?P) (?X,?Y) :— ?P(?X,?Z) and closure(?7P) (?Z,7Y).

HiLog and F-logic are seamlessly integrated in the FLORA-2 system [11, 31].

5 State Changes, Reactive Rules and Procedural Attachments

We believe that an expressive rule language needs to support at least the following three features, and various
researchers proposed partial solutions to some of them:

e Fvent-condition-action rules (triggers, reactive rules)
e Procedural attachments

e State-changing actions

Limitation of space does not allow us to survey the various approaches, so we will mention only what we believe
is the most promising approach: Transaction Logic [4, 5]. Our reasons have to do with the fact that this logic
provides a solution to all the above desiderata in a uniform and declarative way. Transaction Logic was designed
specifically for the rule-based paradigm and was intended to provide a declarative account for state-changing
actions within such languages.



The basic idea behind Transaction Logic is introduction of a new logical connective and a corresponding
path-based model theory. These two ideas enable the logic to talk about sequences of state-changing and
state-querying actions. Elementary state changes are modeled through so-called transition oracles, which is
precisely what is needed in order to support procedural attachments. Various works have shown that this logic
is natural enough to support the concept of triggers in databases, process modeling, and even behavioral aspects
of contracting for Semantic Web Services [6, 9]. Transaction Logic is implemented as part of the FLORA-2
system and another implementation is also available at http://www.cs.toronto.edu/~bonner/ctr/.

6 Paraconsistency and Approximate Reasoning

One would be wise to take what one finds on the Web with a grain of salt, and there is no reason to give
a different treatment to Web information that is specified formally. An intelligent Web agent should be able
to assign certainty factors to statements it comes across in various ontologies, and it should not break down
when some of these statements contradict each other. Tolerance to such contradictions is called paraconsistency.
There is vast literature on the subject [21], and limitation of space does not permit us spending any time on it.
We would only like to mention one proposal, which was designed for and was developed in the framework of a
traditional rule-based language: the Annotated Logic [19)].

In an annotated logic, each fact has a certainty factor, and rules derive new facts also with only some degree
of confidence. Contradictory facts lead to local inconsistency, which affects only the information that is directly
dependent on the contradictory facts. The knowledge base remains globally consistent, and useful inferences
can be drawn from the parts that are not tainted. Annotated logic has been implemented and successfully used
in the HERMES system.?

7 Other Features

In this section we will briefly mention some other important features of an expressive rule language, which we
cannot elaborate on due to space limitations.

Database style constraints. Constraints in the database style are used to ensure that, after each update, the
state of the knowledge base is consistent with a set of formulas that are specified separately from the knowledge
base. Unlike what is called restrictions in languages such as OWL, database constraints rely on the closed
world assumption and are not (and cannot be) used to make additional inferences. (In the Web environment
the scope within which the closure of the knowledge is taken should always be made clear.)

Constraint programming. Constraint programming [17] (not to be confused with constraints of the previous
paragraph) have been recognized as a very useful problem solving paradigm. We believe that some Web
applications (e.g., scheduling, service discovery) could benefit from this feature.

Modularity. Since knowledge on the Web is inherently decentralized, clashes involving naming will be common.
It is widely recognized that this problem can be solved through the namespace mechanism. A more subtle kind
of a clash arises when different ontologies make different (perhaps compatible, perhaps not) statements about the
same concepts or individuals. This problem can be solved through the mechanism of modules of the kind that
exists in FLORA-2 [31] and TRIPLE [25]. WSML, the specification language of WSMO, has also adopted this
concept. Unfortunately, modules have often been confused with namespaces, and there is insufficient awareness
of this concept and of the fact that modules and namespaces are orthogonal issues.

8 Summary

In summary, our position is that we should learn from the mistakes made by the logic programming community
in the 1980’s and from the advancements made in 1990’s. These lessons include:

2http://www.cs.umd.edu/projects/hermes/



. A rule language for the Web should be featurefull, not featureless.

. It should be declarative as much as possible.

It should support the object-oriented paradigm and meta-reasoning.
The language must support triggers, constraints, procedural attachments, and state-changing actions.
It must be tolerant to inconsistency and be able to represent uncertain information.

It should support not only namespaces, but also modularization a la FLORA-2 and TRIPLE.
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