
RULE LANGUAGES FOR INTEROPERABILITY

Bob McWhirter (bob@openxource.com), OpenXource, LLC

LANGUAGES VERSUS SYNTAXES

Languages and their concrete syntaxes should be considered separate and different.
Rule-engines that use domain-specific languages and other rule conceptualization
constructs particularly may demonstrate the disjunction between the two. A standardized
syntax without a standardized language provides little value in meeting the goals of this
workshop.

PRIOR ART & PRECEDENT

Being a W3C workshop, it is assumed that an XML-based approach is a given. XML is
pervasive and many existing tools and libraries support the basic techniques of document
manipulation.

Looking at the specifications that surround XML itself, I suggest that we evaluate
following a model similar to that of the XML, XML-InfoSet and XML-Namespaces
Recommendations. The formal syntax should be defined in XSD.

RULE-INFOSET

XML-InfoSet helps to provide an abstract way of viewing the core data within a given
concrete XML document. XPath and XML-Canonicalization Recommendations are
based around InfoSet manipulation. InfoSet is ostensibly the language of XML, while
octect streams containing pointy-brackets represent usages of the syntax of XML.

In this line, before defining a syntax for a rule language, the rule language itself should be
created. We should aim to define the language in terms of entities, components and
relationships. The business rule community already has an established to discuss rules
from which we can draw. Sub-communities, such as inference vs. ECA rules, forward-
chaining vs. backwards-chaining, each have their own additions and changes to the basic
language of rules.

Since each community has a history and a valid reason for their own dialects of the
general Platonic rule language, their sub-languages should be supportable. Many times
the semantic differences in seemingly equivalent terms across dialects truly reflect a
significant feature. Maintaining this goal also helps avoid “design by committee” where
all viewpoints are compromised resulting in a mediocre product. Supporting sub-
language dialects should also allow easy support for domain-specific language constructs.

RULE-EXPRESSION

In addition to simply expressing the model of a rule, the semantic content within each
entity may be expressible in a common fashion. General forms of relationships can
expressed in all languages. Operators such as “is less than,” “is equal to,” and “matches”

are easily to genericize across rule systems. Pulling from perhaps the XPath expression
language or SQL, a rule-centric relational language should be defined against the Rule-
InfoSet.

RULE SYNTAX

After the Rule-InfoSet and Rule-Expression languages are defined, mapping them onto a
pointy-bracket XML-based syntax should be relatively straightforward. The structure of
the InfoSet model will lend itself to a particular XML structure.

WEAKNESSES

A single language and syntax that can be read by any system may be a false Holy Grail.
Each rule-system has its own strengths and weaknesses. Having a completely compatible
language would neutralize these differences. Each system should be encouraged to shine
in its own feature-set. The resulting language and syntax defined will probably contain
several opaque portions not easily or commonly handled by all systems. The result may
be simply attribute values that have no semantic meaning outside of a specific system. It
may result in entire sub-trees of the XML document are engine-specific. This should not
be viewed as a failing.

BENEFITS

By creating an InfoSet for rule languages, generic tools can be created to perform high-
level functions such as acting as a repository/deployer, performing general rule
relationship analysis, and transformations can be written in a system-independent
manner.

InfoSet bindings for different programming languages can be created (similar to the
DOM), allowing for reusable generic rule-manipulation libraries.

