Web Service Capabilities and Constraints in WSMO *

Sinuhé Arroyo Christoph Bussler Jacek Kopecky Rubén Lara
Axel Polleres Michat Zaremba

<firstname.lastname>@deri.org
Digital Enterprise Research Institute (DERI)

Galway, Ireland and Innsbruck, Austria

August 31, 2004

Abstract

This paper summarizes the necessities on the semantic modeling of Web Service
constraints and capabilities from the viewpoint of the Web Service Modeling Ontology
(WSMO) working group. We will give a short motivating use case from the travel-
ling domain which we shall use to classify possible capabilities and constraints to be
described on the service and requester side.

1 Introduction

Web Services enable communication between distributed systems and integration of ap-
plications over the network by supporting program-to-program interactions. Existing
Web Services cornerstone technologies such as UDDI [1], WSDL [2] and SOAP [5] pro-
vide the basic functionality for discovering (UDDI), describing interfaces (WSDL) and
exchanging messages (SOAP) in heterogeneous, autonomous and distributed systems.

In B2C and B2B interactions, additionally to requirements of providing richer de-
scription of Web Services functionality, we recognise that Web Services and their clients
have constraints and capabilities, which must be addressed to successfully carry business
transactions. The motivation of our work is to promote the abstraction of capabilities
and constraints from the existing efforts in Web Services community, which still remain
focused on syntactical aspects of Web Services execution.

Web Services standards do not provide any mechanism to specify how to include
additional information describing capabilities and constraints, which matters in some
more sophisticated use cases beyond simple request/response interactions. In this paper
we present the viewpoint of the Web Services Modeling Ontology (WSMO) working
group on constraints and capabilities.

Inspired by a simple use case for WSMO from [7], which we will introduce in Sec-
tion 2, we discuss selected aspects which are adequate to address issues of defining
capabilities and constraints on both client and service sides. Based on this use case,
Section 3 presents a classification of capabilities and constraints from the viewpoints of

*This work is supported by the SFI (Science Fundation Ireland) under the DERI-Lion project and by the
European Commission under the projects DIP, Knowledge Web, SEKT, SWWS, and Esperonto, and by the
Vienna city government under the CoOperate programme. The authors thank all members of the WSMO
working group (cf. http://www.wsmo.org/) for fruitful discussions on this document.



Web Service providers and requesters. We introduce WSMO in Section 4 and present
its main conceptual elements. In the same section we briefly identify how the con-
straints identified in Section 3 can be realized in and influence future extensions of
WSMO. We close the paper with some open points for future work not restricted to
WSMO in Section 5

2 Use case

The use case, taken from WSMO Use Case Modeling and Testing Working Draft [7],
presents a scenario for booking international train tickets on-line. The goal is to search
and buy a train ticket for traveling from Innsbruck (Austria) to Frankfurt (Germany).

In a nutshell we would like to get a two-way ticket, traveling to Frankfurt on No-
vember 15, 2004 and coming back to Innsbruck on December 1, 2004. We would like to
depart from Innsbruck in the afternoon and arrive back before 1:00 am. Also, for both
of the itineraries we do not want to change trains more than one time. Preferably, we
would like to travel in first class in both ways, and, in case there are no trains available
to arrive in Innsbruck before 1:00 am the next day, we would make use of the facilities
of a sleeping train, thus traveling during the night. Regarding the payment informa-
tion, the service has to accept MasterCard and we will only disclose our credit card
details to services having a MasterCard certificate. Finally, we’d like any information
disclosed to the service to be confidential and the data exchanged to be encrypted. The
services themselves require payment using a credit card, can guarantee confidentiality,
and require encryption from the consumer side.

3 Classification of Constraints

In the context of semantic description and discovery of Web Services, we identify ca-
pabilities and constraints on both the provider side and the consumer side. To find a
service that can satisfy the needs of a client, the process of automatic discovery matches
the capabilities of the service against the goal and the constraints of the client and then
checks that the client has the capabilities to satisfy all the constraints of the service.
In the following we give a (not necessarily complete) classification of the most common
such capabilities and constraints.

3.1 Capabilities, Constraints, and Preferences

The distinction between a capability and a constraint is not always clear and unam-
biguous. For example the fact that a service operates only in business hours could be
viewed both as a capability and as a constraint. Our definitions of the terms are as
follows:

Capability expresses a provision by either the provider or the requester. On the
provider side it expresses what the service can offer e.g. selling train tickets for
Austria. Another example of provider-side capability is the support for different
encryption algorithms and confidentiality of the data provided by the consumer.
We also identify capabilities on the consumer side, which express what the client
can offer but does not really insist on, for example a client can provide his credit
card details for billing, but if a service offering free tickets is found, the credit card
number will not need to be exchanged; or a client supports a number of different
encryption algorithms and will likely only use one of them when communicating
with the selected service.



Constraint (also known as hard constraint) expresses a certain requirement on the
partner in a collaboration. On the provider side it is what a service requires
to be able to fulfill its capability, e.g. a valid credit card number for billing or
a given security protocol to be used. On the consumer side a constraint is a
requirement on what the service must be able to provide in order to suit the
client needs, for instance providing a train ticket from Innsbruck to Frankfurt
on November 15th, 2004, perform encryption, guarantee confidentiality or accept
MasterCard. The satisfaction of constraints might not be directly achievable but
include a process of negotiation exchanging constraints and capabilities in turn, for
instance concerning the disclosure of information. For example, a consumer will
only disclose his credit card details to services providing a MasterCard certificate.

Preference (also known as soft constraint) describes a preferred condition affecting
the operation. Preferences are usually modeled on the consumer side, where they
are used for selecting from among multiple discovered services the one that will
best suit the client needs. For example, we might prefer a train service that offers
a connection arriving before 1:00 am in first class. While these conditions can be
viewed as a ”soft” variant of constraints, preferences can also model optimization
criteria, for instance keeping the number of train minimal. In case of several
independent preferences, measures for prioritizing different preferences might be
useful. Preferences are also useful on provider side, for instance for indicating to
the client that the use of a secure a connection is preferred although not required.

3.2 Functional vs. Non-functional

Another common distinction for capabilities, constraints, and preferences is the division
between functional and non-functional properties of services and requests. A functional
capability on the provider side describes the purpose of the service (what the service
does), and a functional constraint is a requirement mandated by that purpose. On
the consumer side, a functional constraint describes the goal of the client (what the
client wants). Conversely, non-functional capabilities or constraints are incidental de-
tails specific to the implementation or running environment, irrelevant to the actual
purpose of the service or goal of the client but necessary for successful and interoperable
communication (i.e., how the service can achieve a goal).

In our use case, the services have the functional capability to sell train tickets and
the non-functional constraint that the client has to perform encryption; the client has
the functional constraint — goal — to buy a ticket from Innsbruck to Frankfurt and back
for the specific days, non-functional constraint that communication has to be encrypted
and the data disclosed be kept confidential, and finally the non-functional capability of
providing valid credit card information.

In modelling a concrete scenario, it is often not clear whether a given capability
or constraint is functional or non-functional, and in fact it depends on the architect’s
view of the purpose of the service or the goal of the client. For instance, authentication
could be a non-functional constraint of an on-line ticket service, but it would be a
functional constraint (maybe, in fact, a functional capability) of a security door-guard
system providing certain kinds of authentications.

During automatic discovery, it may be useful to drop the distinction between func-
tional and non-functional because a client requiring something as a functional constraint
(its goal) might miss a service that can provide that but views it as a non-functional
capability.



4 Realization in WSMO

The Web Service Modeling Ontology (WSMO) [4] is a formal ontology for describing
the various aspects related to Semantic Web Services, representing the backbone for the
development of Web Service Modeling Language (WSML) and Web Service Modeling
Execution Environment (WSMX). The objective of WSMO and its surrounding efforts
is to define a coherent technology for Semantic Web Services.

WSMO defines the modeling elements for describing several aspects of Semantic
Web Services. The conceptual grounding of WSMO is based on the Web Service Mod-
eling Framework (WSMF) [3], adhering to the principles of loose coupling and strong
mediation services. The four main components of WSMO are:

Ontologies provide the terminology and formal semantics to the information used by
all other components.

Goals specify objectives that a client may have when consulting a Web Service. They
provide the means to express high level description of a concrete task.

Web Services represent the functional part which must be semantically described in
order to allow their semi-automated use. In the WSMO specification the prop-
erties of Web Services are described by means of a (functional) capability and
other, non-functional, properties.

Mediators are used as connectors in order to provide interoperability among the other
components.

WSMO goals are described in terms of the desired information and world state
that must result from the execution of a given service. They are used to model the
functional constraints of the requester. Web Service capabilities, which are part of
the description of Web Services, capture the functionality of a given service. Such
functional capabilities are modelled in terms of the preconditions and assumptions for
the correct execution of the service and the postconditions and effects resulting from
it.

Non-functional properties are also modelled on both sides. However, non-functional
capabilities and constraints are not explicitly differentiated. Such a differentiation is
expected to be part of future extensions of WSMO.

When analyzing WSMO with respect to our previous classification we see that,
currently, WSMO does not explicitly model capabilities on the requester side, since
goals only model requester side functional constraints. The modelling of requester
capabilities will be considered in future versions of WSMO. Moreover, we expect to
add support for preferences on both sides. While currently only functional constraints
are considered, also the modelling of information disclosure constraints might be added
to WSMO in future versions. Some ideas on how to support such constraints have been
discussed in [6].

5 Open Discussion Points

Firstly, an interesting point is the handling of temporal and geographical (location)
limits, like the above-mentioned service operating only during business hours, or a
service provided only in Europe. The modeling of these limits is not yet settled, nor
is the view on whether these limits should form a part of the capability of a service
or whether they should be constraints of the service. Similar questions arise on the
consumer side.



Secondly, it is not yet clear what scope capabilities and constraints should have. In
WSDL [8] terms, capabilities and constraints can be applied on the fine granularity of
operations or on the endpoints and perhaps even on the whole service.

Third, the conversational interface of a service, if viewed as a grouping of operations,
could also be the target for applying capabilities and constraints, or on the other hand
this interface can be could be viewed as a constraint on how a service can be invoked.

Finally, in this paper we have discussed the declarative specification of capabilities,
constraints, and preferences, both on the requester and provider side on a semantic
level. However, how the declared constraints are ensured and the preferences con-
sidered at execution time must also be addressed. For that purpose, constraints and
preferences must be grounded to existing technologies. We envision the following steps
to achieve this: (a) extend WSDL/BPEL4WS with constrains and preferences and in-
troduce an explicit model for requesters and providers (WSDL and BPEL4WS do not
distinguish between requesters and providers), (b) control process execution based on
the described capabilities and preferences. Even though constraints might be checked
and preferences considered before execution, it can happen that they are violated at ac-
tual execution. Therefore, the control of the execution must also specify what happens
if the constraints are violated and foresee methods for compensation. This is specially
relevant for composite processes, where such violations by a given process might require
compensation for the processes of the composition executed before.

References

[1] T. Bellwood, L. Clment, and C. von Riegen. UDDI Specification Version 3.0.1.
UDDI Spec Technical Committee, October 2003. http://uddi.org/pubs/uddi_v3.
htm

[2] R. Chinnici, M. Gudgin, J. Moreaum, and S. Weerawarana. Web Services Descrip-
tion Language (WSDL) Version 1.2. World Wide Web Consortium, March 2003.
http://wuw.w3.org/TR/wsd120/

[3] D. Fensel and C. Bussler. Web service modeling framework (WSMF). Electronic
Commerce Research and Applications, 1(2), 2002.

[4] H. Lausen, D. Roman, and U. Keller (editors). Web service modeling ontology -
standard (WSMO-Standard). Working draft, Digital Enterprise Research Institute
(DERI), March 2004. http://wuw.wsmo.org/2004/d2/v1.0/

[5] N. Mitra. SOAP Version 1.2 Part 0: Primer. World Wide Web Consortium, June
2003. http://www.w3.org/TR/soapl2-part0/

[6] D. Olmedilla, R. Lara, A. Polleres, and H. Lausen. Trust negotiation for semantic
web services. First International Workshop on Semantic Web Services and Web
Process Composition (SWSWPC 2004), July 2004.

[7] M. Stollberg, H. Lausen, A. Polleres, and R. Lara (editors). Wsmo use case modeling
and testing. Working draft, Digital Enterprise Research Institute (DERI), July 2004.
http://www.wsmo.org/2004/d3/d3.2/v0.1/

[8] World Wide Web Consortium. Web Services Description Language, Version 2.0,
August 2004. Last Call Working Draft, http://www.w3.org/TR/wsd120/



