
IBM Position Paper for W3C Constraints/Capabilities

Statement of Goals
A survey of the terms and technologies cited in this workshop call can produce various interpretations of the goals
of this workshop. The challenges before us, as a community attempting to address business requirements in the
21st century are significant and wide ranging. We are always interested in participating in discussion of these
challenges, but also believe discussion needs to be balanced by a clear set of goals. IBM believes the following
near-term issues must be resolved for web services to continue their successful evolution:

• The communication of metadata related to conditions and constraints expressed between and about Web
service endpoints (between requestor and provider, between service and hosting environment).

• The declarative description of domain specific conditions and constraints such as those for enterprise
privacy.

Consequently IBM’s goals in submitting this paper for this workshop are:
• To discuss the advantages of WS-Policy as a technology for Web services polices and determine the

interest level in this type of activity at the W3C
• To acknowledge the ongoing efforts that we believe need focus in the next several years.

In addition, we believe that the set of issues to emerge in the next 3 to 5 years will include:
• Business modeling as an effective technology for composing Web services into solutions
• Self-managing systems as a way to reduce the administrative costs associated with increasing system

complexity.

Introduct ion
One of the remaining challenges in the evolution of Web services technology is the expression, exchange and
processing of the conditions governing the interactions between Web service endpoints. WSDL and XML Schema
provide metadata describing what a service does by defining the business interface (that is, business operations
like openAccount, processDeposit, etc.) for a Web service. How the service implements the interface and what it
expects or provides to requestors and what is expected or provided in a hosting environment, is equally important.
Is the service transactional? Must callers sign messages? To achieve the promise of a Service-Oriented
Architecture it is important to extend the current Web service interface and message definitions to include the
expression of constraints and conditions on the Web service.

While it is possible to use XML and WSDL extensibility to achieve some of these goals, it is preferable to provide
a common framework for Web services constraints and conditions that allows a clear articulation of the available
options. The common framework must enable constraints and conditions defined for various domains/disciplines
to be combined together consistently so web service providers and consumers are not burdened with many
domain-specific mechanisms. A common framework provides support for determining valid intersections of
constraints and conditions when multiple choices are possible.

It is also important that Web services rely on a declarative model for conditions and constraints. The program
logic implementing a Web service could explicitly implement the conditions/constraints. A declarative model
factors the conditions/constraints out of business logic, allowing for automated implementation by middleware and
operating systems. Using a declarative model enables a better user experience and better reuse of application
code by the organizations that deploy and support Web Service instances.

There are many valid approaches to implementing a Web service’s business functions. Programming languages,
BPEL4WS and business rules are some examples. There are many approaches to rule based programming,
which include decision tables, decision trees, if … then … sets or inference engines. The IBM approach is to view
business rules as one of many ways to implement a Web service. To support customization and tailoring,
designers can use a strategy pattern based on Web services. One service, A, provides the intrinsic
implementation. Service A delegates onto another customizing service, service C, for dynamic, changing
computations. Rules are one way to implement C.

It is IBM’s belief that there is a natural separation of concerns with regard to classification of the varied set of
information often referred to as “policy”. Web service policies are consumable declarative expressions of
conditions and constraints for a particular Web service. The goal is for the Web service endpoints (requestor and
provider) to communicate any requirements or agreements that affect either endpoint when providing a web
service. There may also be policies that a Web service implementation declares to express requirements on a
hosting environment (“the container”).

For Web services, the W3C has played a fundamental role in standardizing the core components of WSDL and
SOAP and this has allowed the industry to achieve a high degree of interoperability both at design time (tool) and
runtime. IBM believes there is a natural extension to this model in the form of WS-Policy and WS-Policy
Attachments1 in the near term.

WS-Policy [WS-Policy] is an extensible framework for defining Web services policy. WS-PolicyAttachments
[WS-PolicyAttachment] offers a flexible way of associating policy expressions with existing (and future) Web
services artifacts. The WS-Policy specification defines a common framework for services to annotate their
interface definitions to describe their service assurance qualities and requirements in the form of a machine-
readable expression containing combinations of individual assertions. The WS-Policy framework also allows for
algorithms that determine which concrete policies to apply when the requestor, provider and container support
multiple options.

Web Services Policy in the Web Services Protocol Stack
There is an increasing body of specifications and standards that improve the fidelity and quality of Web service
interactions. These specifications require the ability to annotate Web services with metadata describing valid and
required options.

IBM has participated with other industry partners in the development of these Web services specifications, among
them Web Services Security, Web Services Reliable Messaging, Web Services Addressing, Web Services
Transactions, Web Services Coordination, and the Business Process Execution Language for Web Services
(BPEL4WS). These specifications introduce three kinds of artifacts:

• Architected function enablement (infrastructure) specific headers that augment messages with function
specific information, e.g. transaction context, message sequence numbers.

• Distinguished Web services that participate in the implementation of the enablement functions, e.g.
Coordinator, Trust Authority.

• Endpoint protocols for implementing the enablement functions, e.g. message retransmission, transaction
protocol sets.

The result is significant step forward towards a robust secure, reliable, and transactional Web services
infrastructure. But there is more to be done.

In this context of rich interactions and multiple service assurance protocols it is important for a Web service to be
able to indicate in a consistent and declarative way what it is capable of supporting, including the types of
protocols that it supports, as well as what requirements it places on potential requesters. The service
implementation should also be able to document requirements on a hosting environment since much of the
implementation of the protocols and functions occurs in middleware and OS functions supporting the service’s
implementation. Thus, there must be a way to describe the constraints/conditions derived from the environment
hosting a particular web service.

Modeling these properties in separately standardized discipline specific XML languages allows a developer and
deployer to incrementally augment the sophistication of a Web service description. It allows basic services to work
today and it allows for the evolution of the sophistication of these services over time. It also allows the partitioning

1 http://www.ibm.com/developerworks/library/specification/ws-polfram/,
http://www.ibm.com/developerworks/library/specification/ws-polatt/

of the work into units where the subject matter experts can proceed on expressing their discipline requirements
independently thus allowing for parallelism of development.

WS-Policy proposes a framework that extends the features already provided through WSDL, including tool
interoperability but also service discovery. More refined service descriptions, qualified by specific WS-policies,
support more accurate discovery of compatible services. In a service registry (such as the UDDI registry), queries
of WS-Policy described services enable the retrieval of services supporting the appropriate policies in addition to
the correct business interface. For example a query may request all services that support the purchaseOrder
WSDL interface (port type) and also use Kerberos for authentication and have an explicitly stated privacy policy.
This allows a service requestor to select a service provider based on the quality of the interaction used to deliver
their business contracts.

Service registries are important components of some Web Service environments. However, it is often important to
address the direct request of service information. WS-Policy, as well as other metadata relevant to the service
interaction (such as XML Schema and WSDL descriptions) can also be dynamically exchanged between
interacting endpoints using the Web Services Metadata Exchange protocol. WS-MetadataExchange allows a
service requester to directly ask a service provider for all or part of its metadata, without the mediation of a third
party registry. Using the WS-MetadataExchange protocol service endpoints can exchange policies at runtime to
bootstrap their interaction with information about the settings and protocols that apply. This is useful when not all
policy information is in a repository, or when a requestor receives a reference to a service through some
mechanism other than registry query. The direct dynamic exchange of policies also supports the customization of
each specific interaction based for example on the identity of the other endpoint or any other aspect of the context
under which it takes place. With this flexibility, Web Services can then be designed to offer different qualities of
service to different targeted audiences.

Detailed Example
This call for papers has asked that each paper provide an illustration of the use case given. To illustrate our
positions stated above, we have taken the W3C provided scenario2 and used it to demonstrate the practical
application of WS-Policy.

WS-Policy defines a policy to be a collection of policy alternatives, where each policy alternative is a collection of
policy assertions. Some policy assertions specify traditional requirements that will be reflected in the messages
that are exchanged (e.g., tokens used for authentication, digital signatures or encryption). Other policy assertions
may have no manifestation in the messages exchanged yet are critical to proper service selection and usage (e.g.,
site privacy policy). WS-Policy provides a single policy grammar to allow both kinds of assertions to be defined. A
valid interpretation of the policy expression below would be that an invocation of a Web service makes a choice
from two policy alternatives (Lines 3 to 8) defined in WS-SecurityPolicy3 to use either Username tokens or X509v3
tokens for authentication. Additionally an assertion for encrypting a header is included (lines 10 to 18).

01 <wsp:Policy xml:base=http://www.fabrikam123.com/policies wsu:Id="SEC">
02 <wsp:ExactlyOne>
03 <wsse:SecurityToken>
04 <wsse:TokenType>wsse:UsernameToken</wsse:>
05 </wsse:SecurityToken>
06 <wsse:SecurityToken>
07 <wsse:TokenType>wsse:X509v3</wsse:TokenType>
08 </wsse:SecurityToken>
09 </wsp:ExactlyOne>
10 <wsse:Confidentiatlity>

2 A Web service wishes to stipulate that clients are required support a reliable messaging protocol, and encrypt a
specific SOAP header using OASIS Web Service Security with X.509 or user name security token in order to
send an acceptable request message. Furthermore, the service has a P3P policy associated with its operations.
Such constraints and capabilities might be associated with the Web service via a SOAP header or a WSDL file.

3 http://www-106.ibm.com/developerworks/webservices/library/ws-secpol/

11 <KeyInfo>
12 <wsse:Reference URI="#ENCKEY" />
13 </KeyInfo>
14 <wsse:AlgEncryption URI=”http://www.w3.org/2001/04/xmlenc#3des-cbc/>
15 <MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part >
16 <wsp:Header() >
17 </MessageParts>
18 <wsse:Confidentiality>
19 </wsp:Policy>

To facilitate interoperability, discipline authors of a Web service policy will need to partition and standardize
assertions into non-overlapping disciplines. For example, adding an approach to distributed message trace might
include defining specific assertions describing trace levels Generally, it is recommended that assertions are
grouped by a namespace tag indicating the discipline. Within a namespace, there are generally two types of
assertions. Simple assertions that contain only a Qname which can be used to find a match by taking two policies
and intersecting them to find a common alternative. Simple assertions are generally seen to have self defining
semantics. The second general type of assertion is a parameterized assertion in which additonal attributes are
provided along with a qname. The additional values are used to clarify the semantics of the base assertion
Qname. To illustrate the given use case further, let’s say the reliable messaging experts define the following
simple (SequenceCreation) and parameterized (BaseRetransmissionInterval) assertions for RM:
01 <wsp:Policy xml:base=http://www.fabrikam123.com/policies wsu:Id="RM">
02 <wsrm:SequenceCreation />
03 <wsrm:BaseRetransmissionInterval Milliseconds="3000"/>
04 </wsp:Policy>

The final step in the example, then is to associate them with a subject, in this case a WSDL document. WS-Policy
Attachment defines two general-purpose mechanisms for associating policies with one or more Policy Subjects.
The first (which we use to illustrate the use case given) allows XML-based descriptions of resources (represented
as XML elements) to associate Policy as part of their definition (i.e. WSDL). The second allows Policies to be
associated with arbitrary Policy Subjects independently from their definition (i.e., EPRs). The box below shows
how policies may be defined in WSDL/1.1. WSDL 1.1 can be used to associate Policies with four different types of
Policy Subject, identified as the Service Policy Subject, the Endpoint Policy Subject, the Operation Policy Subject
and the Message Policy Subject. These subjects should be considered as nested, due to the hierarchical nature
of WSDL.
<xml version="1.0"?>
<definitions name="StockQuote"
targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ps="http://fabrikam123.com/policies">
 <wsp:UsingPolicy wsdl:Required="true" />
 …
 <portType name="StockQuotePortType"
 wsp:PolicyURIs="http://www.fabrikam123.com/policies#RM">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceRequest"
 <output message="tns:GetLastTradePriceResponse"/>
 </operation>
 </portType>
 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <wsp:Policy>
 <wsse:Integrity>
 <wsse:Algorithm Type="wsse:AlgCanonicalization"
 URI=" http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wsse:Algorithm Type="wsse:AlgSignature"
 URI=" http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part >

 <wsp:Body() >
 </MessageParts>
 <wsse:SecurityToken>
 <wsse:TokenTypeType>wsse:X509v3</wsse:TokenType>
 </wsse:SecurityToken>
 <wsse:Integrity>
 </wsp:Policy>
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation
 soapAction="http://example.com/GetLastTradePrice"/>
 <input>
 <wsp:PolicyReference
 URI="http://www.fabrikam123.com/policies#SEC"/>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
</definitions>

One of the remaining issues for a policy framework to address is the requirement for additional XPath-based
domain expressions to be used in conjunction with the <PolicyAttachment> mechanism. These new expressions
will allow the external attachment of policy assertions to subjects other than service endpoints such as XML
Schema definitions, WSDL definitions including operations, messages (inputs, outputs and faults) and message
parts as well as specific sections of XML document instances. Using these new domain expressions it would be
possible to address the last aspect of the proposed W3C use case……how to associate a existing P3P policy with
a service via a SOAP header or to an existing WSDL file.

Summary
Web service standards like WSDL, XML and SOAP have achieved widespread and growing adoption. These
specifications allow runtime interoperability between Web services, independently of implementing organization,
hosting company or enabling infrastructure. WSDL, XML and BPEL4WS provide support for interoperability
between different development tool suites to support collaborative design, and support documenting Web
services in registries like UDDI. Most Web service scenarios are incrementally requiring more powerful functions
like security, transactions and Reliable Messaging. There is an evolving set of specifications and standards
defining such functions, and a growing set of middleware automating the implementation which is the most
pressing problem critical to the growth of Web Services.

The evolution of these capabilities introduces a requirement for describing supported, expected, and required
options. IBM feels that a framework built on XML and complimenting WSDL is the proper approach for solving this
problem. The WS-Policy framework meets the requirements. WS-Policy
• Allows for independent specification of the XML languages for policies in different domains of enablement

functions
• Provides composition of independently authored policy assertions into compound document that define valid

combinations of choices
• Offers a simple, algorithmic approach for selecting the right policy setting between multiple options
• Allows documenting the valid policy associated with a Web service in registries, and also supports binding

time (run time) exchange of the information through protocols like WS-MetadataExchange.

The space of “rules,” “policies,” “semantic information,” “ontologies,” etc. is a vast field. Rules and the Strategy
Pattern are approaches to implementing services. Tackling the general “semantic” problem is a large undertaking,
which will take years of trial and error. IBM feels that the next logical, achievable and most important problem is

supporting a framework for policy that compliments WSDL, XML, SOAP and the evolving set of standards for
service assurance (transactions, security, etc.).

Contributors

Ali Arsanjani, Francisco Curbera, Donald F Ferguson, Allen Gilbert, Christopher B Ferris, Steve Graham,
Maryann Hondo(editor; mhondo@us.ibm.com), David L Kaminsky, Anthony Nadalin, Chris Sharp, John Sweitzer,
Tony Storey

References

[WS-Policy]
"Web Services Policy Framework (WS-Policy)," Siddharth Bajaj, Don Box, Dave Chappell, Francisco
Curbera, Glen Daniels, Phillip Hallam-Baker, Maryann Hondo, Chris Kaler, Dave Langworthy, Ashok
Malhotra, Anthony Nadalin, Nataraj Nagaratnam, Mark Nottingham, Hemma Prafullchandra, Claus von
Riegen, Jeffrey Schlimmer (Editor), Chris Sharp, John Shewchuk, September 2004.

[WS-PolicyAttachment]
"Web Services Policy Attachment (WS-PolicyAttachment)," Siddharth Bajaj, Don Box, Dave Chappell,
Francisco Curbera, Glen Daniels, Phillip Hallam-Baker, Maryann Hondo, Chris Kaler, Ashok Malhortra,
Hiroshi Maruyama, Anthony Nadalin, Mark Nottingham, David Orchard, Hemma Prafullchandra, Jeffrey
Schlimmer, Chris Sharp (editor), Claus von Riegen, and John Shewchuk, September 2004.

