Validating statistical index data represented in RDF using
SPARQL queries

Jose Emilio Labra Gayo Jose M. Alvarez Rodriguez
WESO Research Group South East European Research Center
University of Oviedo Greece
Spain labra@uniovi.es jmalvarez @seerc.org

1 Introduction

The creation and use of quantitative indexes is a widely accepted practice that has been applied to numer-
ous domains like Bibliometrics (Impact factor), research and academic performance (H-Index or Shanghai
rankings), cloud computing (Global Cloud Index, by CISCO), etc. We consider that those indexes and
rankings could benefit from a Linked Data approach where the rankings could be seen, tracked and verified
by their users.

We participated in the Web Index project (http://thewebindex. org), which created an index to
measure the Web impact in different countries. The 2012 version offered a data portal| whose data was
obtained by transforming the raw observations and precomputed values from Excel sheets to RDF[3]]. In
the 2013 version of that data portal, we are working on both validating and computing observations to
automatically derivate and populate new values to automate the validation and even the generation of the
index from raw data.

We have defined a generic vocabulary of computational index structures which could be applied to
compute and validate any other kind of index and can be seen as an instance of the RDF Data Cube vocab-
ulary [2]]. The validation process employs SPARQL [4] queries to model the different integrity constraints
and computation steps in a declarative way.

At this moment, we have a running example and a validator which reads and executes the SPARQL
queries. Source code and some examples are available at https://github.com/weso/computex.
Although our prototype validator has been implemented in Scala, our approach is independent of any pro-
gramming language as far as it can load and execute SPARQL 1.1 queries.

Along the paper we will use Turtle and SPARQL notation and assume that the namespaces have been
declared using the most common prefixes found in http://prefix.cc.

2 Example data and Index computation process

Our data model consists of a list of observations which can be raw observations obtained from an external
source or computed observations derived from other observations. An example observation can be:

Ihttp://data.webfoundation.org

mailto:labra@uniovi.es
mailto:jmalvarez@seerc.org
http://thewebindex.org
https://github.com/weso/computex
http://prefix.cc
http://data.webfoundation.org

obs:obsM23 a gb:Observation ;
cex:computation [a cex:Z-Score ;

cex:observation obs:obsA23 ; cex:slice slice:sliceA09 ; 1 ;
cex:value 0.56 ;
cex:md5-checksum "2917835203..." ;

cex:indicator indicator:A ;

cex:concept country:ESP ;

gb:dataSet dataset:A-Normalized ;

... other declarations omitted for brevity

Where we declare that obs: obsM23 is an observation whose value is 0. 56 that has been obtained as the
Z-Score of the observation obs:223 using the slice s1ice:slicena09. The observations refers to indicator
indicator:A, to the concept country:ESP and to the dataset dataset :A-Normalized.

For each observation, we also add a value for cex:md5-checksum Which is obtained as a combination of
the different values of the observation and allows a user to verify the values asserted to that observation.

3 Computex vocabulary

The Computex vocabulary is available at http://purl.org/weso/computex. It defines terms re-
lated to the computation of statistical index data and is compatible with RDF Data Cube vocabulary. Some
terms defined in the vocabulary are:

e cex:Concept represents the entities that we are indexing. In the case of the Web Index project, the
concepts are the different countries. In other applications it could be Universities, journals, services,
etc.

® cex:Indicator. A dimension whose values add information to the Index. Indicators can be simple
dimensions, for example: the mobile phone suscriptions per 100 population, or can be composed
from other indicators.

® gb:Observation. This is the same term as in the RDF Data Cube vocabulary. It contains values for
the properties: cex:value, cex:indicator and cex:concept, etc. The value of a gb:0bservation
can be a Raw value obtained from an external source or a computed value obtained from other obser-
vations.

® cex:Computation. We have declared the main computation types that we needed for the WebIndex
project, which have been summarized in table[I] That list of computation types is non-exhaustive and
can be further extended in the future.

® cex:WeightSchema a weight schema for a list of indicators. It consists of a weight associated for each
indicator which can be used to compute an aggregated observation.

4 Validation approach

The validation approach employed in the 2012 WeblIndex project was based on resource templates similar
to the OSLC resource shapes E] and the MD5 checksum field. Apart from that, we did not verify that

Zhttp://www.w3.0rg/2012/12/rdf-val/SOTA

http://purl.org/weso/computex
http://www.w3.org/2012/12/rdf-val/SOTA

Table 1: Some types of statistical computations

Computation Description Properties
Raw No computation. Raw value obtained from external
source.
Mean Mean of a set of observations cex:observation
cex:slice
Increment Increment an observation by a given amount cex:observation
cex:amount
Copy A copy of another observation cex:observation
Z-score A normalization of an observation using the values cex:observation
from a Slice. cex:slice
Ranking Position in the ranking of a slice of observations. cex:observation
cex:slice
AverageGrowth Expected average growth of N observations cex:observations
WeightedMean Weighted mean of an observation cex:observation

cex:slice

cex:weightSchema

the precomputed values imported from the Excel sheets really match the value that could be obtained by
following the declared computation process.

The new validation approach proposed in the paper goes a step forward. The goal is not only to check
that a resource contains a given set of fields and values, but also that those values really match the values
that can be obtained by following the declared computations.

The proposed approach has been inspired by the integrity constraint specification proposed by the RDF
Data Cube vocabulary which employs a set of SPARQL ask queries to check the integrity of RDF Data
Cube data. Although asx queries provide a good means to check integrity, in practice their boolean nature
does not offer too much help when a dataset does not accomplish with the data model.

We decided to use consTRuCT queries which, in case of error, contain an error message and a list of error
parameters that can help to spot the problematic data.

We transformed the ask queries defined in the RDF Data Cube specification to consTRucT queries. For
example, the query to validate the RDF Data Cube integrity constraint 4 (IC-4) is:

CONSTRUCT {
[a cex:Error ; cex:errorParam [cex:name "dim"; cex:value 2dim] ;
cex:msg "Every Dimension must have a declared range" . |
} WHERE { ?dim a gb:DimensionProperty .
FILTER NOT EXISTS { ?dim rdfs:range [] }
}

In order to make our error messages compatible with EARL [1]], we have defined cex:Error as a
subclass of earl:TestResult and declared it to have the value earl: failed for the property earl:outcome.
We have also created our own set of SPARQL consTrucT queries to validate the Computex vocabulary
terms, specially the computation of index data. For example, the following query validates that every

observation has at most one value.

CONSTRUCT {
[a cex:Error ; cex:errorParam # ... omitted
cex:msg "Observation has two different values" .]
} WHERE { ?obs a gb:Observation .
?0bs cex:value ?valuel . ?obs cex:value ?value?2
FILTER (?valuel != ?value2)
}

Using this approach, it is possible to define more expressive validations. For example, we are able to
validate that an observation has been obtained as the mean of other observations.

CONSTRUCT {

[a cex:Error ; cex:errorParam # ...omitted
cex:msg "Mean value does not match"]
} WHERE {

?0bs a gb:Observation ;
cex:computation ?comp ;
cex:value ?val
?comp a cex:Mean .
{ SELECT (AVG (?value) as ?mean) ?2comp WHERE ({
?comp cex:observation ?obsl
?o0bsl cex:value ?value ;
} GROUP BY ?2comp }
FILTER(abs(?mean - ?val) > 0.0001)
}

5 Expressivity limits of SPARQL queries

Validating statistical computations using SPARQL queries offered a good exercise to check SPARQL ex-
pressivity. Although we were able to express most of the computation types, some of them had to employ
functions that are not part of SPARQL 1.1 or had to be defined in a limited way. In this section we review
some of the challenges that we found.

e The Z-score of a value z; is defined as where T is the mean and o0 = is the
standard deviation. To validate that computation using SPARQL queries, it is necessary to employ
the sqrt function. This function is not available in SPARQL 1.1 although some implementations like
Jena ARq2| provide it.

r—T
o

e In order to validate the ranking of an observation (in which position it appears in a list of observa-
tions), we have found two approaches. One is to check all the observations that are below the value of
that observation. This approach requires to check the value of each observation against all the other
values. The other approach is to use a subquery that groups all the observations ordered by their
value using the crour_concat. However, SPARQL does not offer a function to calculate the position
of a substring in a strinﬂ so we divided the length of the substring before the concept’s name by
the length of the concept’s name. This approach is more efficient but only works when all the names
have the same length.

3http://jena.apache.org/documentation/query/library-function.html
4This function is called st rpos in PHP or indexOf in Java

http://jena.apache.org/documentation/query/library-function.html

e Given a list of values =, x5 ...z, the expected value x,; can be extrapolated using the forward
In 4 422
Tn—1

pro o Accessing RDF collections in SPARQL 1.1 requires
property paths and offers limited expressivity. In this particular case the query can be expressed aﬂ

average growth formula: z,, X

CONSTRUCT {
... omitted for brevity
} WHERE {
?o0bs cex:computation [a cex:AverageGrowth; cex:observations ?1ls] ;
cex:value ?val .
?ls rdf:first [cex:value ?vl]
{ SELECT (SUM(?v_n / ?v_nl)/COUNT (*) as ?meanGrowth) WHERE ({
?ls rdf:rest*x [rdf:first [cex:value 2?v._n] ;
rdf:rest [rdf:first [cex:value ?v_nl]]]
}}
FILTER (abs (?meanGrowth % ?vl - ?val) > 0.001) }

6 Conclusions

Using SPARQL queries to validate and compute index data seems a promising use case for linked data
applications. Although we have succesfully employed this approach to validate most of the statistical
computations we needed for the WebIndex project, we have found some limitations in current SPARQL 1.1
expressivity with regards to built-in functions on maths, strings and RDF Collections.

We consider that our approach may be of interest to the RDF Validation workshop in 2 ways: firstly as
a practical approach to validate RDF data which poses some expressivity challenges, and secondly, as a use
case with real data than can act as a benchmark to compare different validation strategies.

Our future work is to automate the declarative computation of index data from the raw observations and
to check the performance using the Web Index data. We are also studying the feasibility of this approach
for online calculation of index scores and rankings.

References

[1] Evaluation and report language EARL 1.0 schema. http://www.w3.org/TR/EARL10-Schema/, 2011.
W3C Working Draft.

[2] The RDF data cube vocabulary. http://www.w3.org/TR/vocab-data-cube/, 2013. W3c Candidate Rec-
ommendation.

[3] J. M. Alvarez Rodriguez, J. Clement, J. E. Labra Gayo, H. Farhan, and P. Ordofiez. Cases on Open-
Linked Data and Semantic Web Applications, chapter Publishing Statistical Data following the Linked
Open Data Principles: The Web Index Project., pages 199-226. IGI Global, 2013. doi:10.4018/978-1-
4666-2827-4.ch011.

[4] S. Harris and A. Seaborne. SPARQL 1.1 query language. http://www.w3.org/TR/sparqll1-query/,
2013.

5This query has been suggested by Joshua Taylor

	1 Introduction
	2 Example data and Index computation process
	3 Computex vocabulary
	4 Validation approach
	5 Expressivity limits of SPARQL queries
	6 Conclusions

