Requirements for RDF Validation
Harold Solbrig
Mayo Clinic

Background
The LDS Hospital HELP system:
Early equivalent of “RDF” store
Data consisted of “strings”
Subject was (usually) a patient
Grouping by event time / specimen
String consisted of collection of 8 byte codes
Data Class
Field Code
[noun, [adjective, [adverb]]]
Type and (data or len/text)

	

RDF Validation Requirements
Sept 10, 2013
2

PTXT Sample

8.1.4.5.10.1.4.26
RDF Validation Requirements
Sept 10, 2013
3

HELP System
Advantages
One data structure – PTXT identifiers determined the specific assertion
Real time and batch data analysis required an understanding of the PTXT 8 byte structure
Assertions were atomic (patient {event {code/value}})
RDF Validation Requirements
Sept 10, 2013
4

HELP System
Disadvantages included
Single parent hierarchy:
The code for allergin (e.g. penicillin) was different than the code for orderable drug
Semantics and syntax intermingled (vs. URI’s)
‘String’ structure was amorphous
Entry screens and software determined what was and wasn’t in a ‘string’
Just because you had a red cell count in a string didn’t necessarily mean you had a white cell count
RDF Validation Requirements
Sept 10, 2013
5

Lack of ‘string’ structure
Inordinate amount of software development time was consumed with detecting possible missing data – even if RBC and WBC co-occurred today, you had to think about what you did if you had one without the other…
… did you search for another string?
… ignore the result?
… just work with the present element?
This becomes a NP problem (in development time…) as the number of combinations increase

RDF Validation Requirements
Sept 10, 2013
6

Solution to HELP problem
ASN.1 Models (!)
Described possible system states
Used to validate input (fine grained)
Used to query output (coarse grained)
Became the basis for constructing forms, advanced queries, etc.
RDF Validation Requirements
Sept 10, 2013
7

On to RDF
RDF
Actually possible that some of the roots are traceable to the HELP / PTXT system
Same strengths…
… although PTXT dictionary is distributed across the net
Same weaknesses…
… what guarantees do I have?

RDF Validation Requirements
Sept 10, 2013
8

RDF Store Guarantees
Store is represented as triples
Subject (IRI or BNODE)
Predicate (IRI)
Object (IRI or BNODE or Literal)
Literals have formal structure (!)
The only guarantees are (1) and (2)

#HaroldSolbrig foaf:givenName “Harold”.
	- can I count of familyName?
	- how does this relate to foaf:name?
:stmt_1 rdf:subject #HaroldSolbrig;
 rdf:predicate foaf:name.
	- no rdf:object? What does this mean?
RDF Validation Requirements
Sept 10, 2013
9

Same issues
Either you assume…
… that you know where the data came from and what constraints applied
… or that the data sources are sensible, consistent and error free
… or you have to start coding defensively

RDF Validation Requirements
Sept 10, 2013
10

Learning SPARQL

2011 Bob DuCharme – Oreilly Books
RDF Validation Requirements
Sept 10, 2013
11

Learning SPARQL
(continued)
Explanation goes on to descripte the use of OPTIONAL, the fact that the order of OPTIONAL matters, the fact that OPTIONAL can be used to find something out about new data sets, etc…
RDF Validation Requirements
Sept 10, 2013
12

Issue
OPTIONAL doesn’t scale and yet…
… unless the particular store can offer some guarantees…
… you should code everything as optional (!)
RDF Validation Requirements
Sept 10, 2013
13

Side Note
RDF Graph – set of triples
Identity of the graph is its content
RDF Dataset – a collection of RDF Graphs
Identity pf dataset is its content (?)
Triple Store – set of triples that change over time
Identity independent of content
RDF Validation Requirements
Sept 10, 2013
14

RDF “Store”
A triple store with
Identity
State (RDF Graph)
Update function
F(S1, GA, GD) S2
Invariants
Always true about State
Transition Rules
Allowed State State transitions
RDF Validation Requirements
Sept 10, 2013
15

RDF Validation
Requirements (MUST)
Provide a standard syntax and semantics for describing RDF Invariants (and Transition Rules?)
Allow publication and discovery
Describe invariant enforcement rules (preconditions / postconditions)
Handle invariant evolution (future)
RDF Validation Requirements
Sept 10, 2013
16

RDF Validation
Requirements (SHOULD)
Invariants:
Representatable in RDF
Easy to use might also imply DSL(s)
Be formally verifable
Consistency
Completeness (?)
Be self defining
Be able to express subset of UML 2.x class and attribute assertions (and some OCL?)
Subset of Invarients UML 2.x
Be able to express XML Schema invariants
Subset of Invariants XML Schema
Be implementable in existing tooling and infrastructure
(RDF / SPARQL / REST / …)

RDF Validation Requirements
Sept 10, 2013
17

Need to Address
Cardinality
Types
Open World / Unique Identifier Issues
Allowed Transitions (ala. Skjaeveland/Stolpe)
Known subjects/predicates/data types
Preconditions
:X a s:type1. rules
Postconditions
:X a s:type1. :x s:r s:y.
Data types
Hidden parsable structure
Allows hiding of complexity
Allowable values (S P, SP T, etc.)

RDF Validation Requirements
Sept 10, 2013
18

Summary
Linked Open Data today (mainly) represents secondary data
Ok for research, but not for production systems
Ok for relatively static stores but not for federation and evolution
The ability to create, share and execute invariants is (a) key to RDF becoming the de-facto language of many domains

RDF Validation Requirements
Sept 10, 2013
19

image1.png

image2.png

image3.png

