SWAD–Europe Deliverable 8.2: Review of RDF Thesaurus Work

Project name:
Semantic Web Advanced Development for Europe (SWAD-Europe)
Project Number:
IST-2001-34732
Workpackage name:
8. Thesaurus Research Prototype
Workpackage description:
Deliverable title:
8.2: Review of RDF Thesaurus Work
URI:
http://www.w3c.rl.ac.uk/SWAD/deliverables/8.2.html
Authors:
Alistair Miles, CCLRC, UK
Brian Matthews, CCLRC, UK
Abstract:
This document is a review of existing work on RDF-based systems for encoding thesaurus data. Seven schemas are discussed in relation to common themes and design features. Some conclusions are drawn regarding requirements for a thesaurus representation system that will allow thesaurus data to become a part of the semantic web. The schemas themselves are presented for convenient analysis as summary tables.
Status:
Completed report
Comments on this document are welcome and should be sent to Alistair Miles or to the public-esw-thes@w3.org list. An archive of this list is available at http://lists.w3.org/Archives/Public/public-esw-thes/

Contents

1. Introduction

2. Discussion of themes

2.1. Concept-based or term-based
2.3. Facets, categories and other grouping structures
2.2. Extensible and customisable relationship sets
2.4. Multilingual data
2.5. Inter-thesaurus mapping
2.6. Relationships as nodes or arcs
2.7. The sub-class approach
2.8. RDFS, DAML or OWL
2.9. RDF implementation Issues
2.10. Versioning, deprecation and change management
2.11. Definitions, explanations and scope notes

3. Conclusions

4. Overview of the schemas

4.1. LIMBER
4.2. ILRT
4.3. CERES
4.4. GEM
4.5. DRC
4.6. FAO
4.7. ETB

References

Appendices (schemas and sample data) A1 (LIMBER), A2 (ILRT), A3 (CERES), A4 (GEM), A5 (DRC), A6 (FAO), A7 (ETB)
Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

1. Introduction

Thesauri are widely used as an aid to information retrieval. A thesaurus can be used in several ways: as a search aid, providing entry to and navigation of a domain vocabulary; as an indexing scheme; as a tool for multilingual translation; as a tool for automated document classification. A number of thesauri exist in the public domain, many of which have been developed over many years by communities of dedicated people. These are highly valuable knowledge resources. There is an opportunity to design systems that allow these resources to enrich the framework of the semantic web. RDF-based representations for thesaurus data are the enabling step towards this goal.

This document is a discussion of work to date on RDF-based representations for thesaurus data. Six RDF schemas and one DAML+OIL ontology are reviewed. Section 2 contains a description and discussion of major
design features, common themes and implementation issues. *Section 3* draws conclusions from the discussion, outlining requirements for a semantic web thesaurus system. *Section 4* presents the schemas for convenient analysis, in the form of tables. The schemas themselves are included in the *appendices*.

There is a lot of variability in the schemas reviewed here. This variability includes some fundamental differences in the underlying data model that is implied. It also includes significant differences in how RDF has been used to represent the same information. If a thesaurus data is to become a useful part of the semantic web, the above schemas will need to converge, and a common approach agreed upon and deployed. At the very least, it must be understood how they relate to each other. However, many issues remain to be considered. For example, although there is standardisation in this area (see [8], [9]), in practice thesauri come in many different flavours. A useful schema must be able to accommodate these subtle variations of meaning. Also, when it becomes a part of the semantic web, thesaurus data will be used alongside ontologies expressed in languages such as OWL and many other types of knowledge organisation scheme. A well designed schema would enable thesaurus data to be fitted seamlessly in to this semantic web.

By highlighting and discussing these and other issues, this document hopes to be a firm foundation for further work in this area.

2. Discussion of themes

This section contains a discussion of the major themes in the design of the schemas here reviewed. Each sub-section is divided into three parts. Firstly, the theme is described, and the alternative implementation solutions are presented. Secondly, it is stated which of the schemas has implemented which alternative solution. Finally, the pros and cons of the alternatives are discussed.

2.1. Concept-based or term-based

- 'Concept-based' and 'term-based' refer to alternative models for understanding the structure of a thesaurus. Which view is taken impacts the design of the schema at a fundamental level.

In the term-based view, a thesaurus is a collection of terms. Terms are the only type of entity considered. Terms may be related to other terms, traditionally using relationships such as ‘broader’ (BT), ‘narrower’ (NT), ‘related’ (RT), ‘use for’ (UF) and ‘use’ (US/USE).

![Term-based model](image)

Figure 1. Term-based model.

A term-based thesaurus will consist of data that resembles the following in structure:

<table>
<thead>
<tr>
<th>Term</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>UF</td>
</tr>
<tr>
<td></td>
<td>BT</td>
</tr>
<tr>
<td></td>
<td>RT</td>
</tr>
<tr>
<td>Air</td>
<td>BT</td>
</tr>
<tr>
<td></td>
<td>RT</td>
</tr>
<tr>
<td></td>
<td>Ventilation</td>
</tr>
<tr>
<td>Air pollution</td>
<td>BT</td>
</tr>
<tr>
<td></td>
<td>RT</td>
</tr>
<tr>
<td>Ozone</td>
<td>BT</td>
</tr>
<tr>
<td>Albinism</td>
<td>US</td>
</tr>
</tbody>
</table>

Figure 2. Term-based example data.

In the concept-based view, a thesaurus consists of two types of entity, *concepts* and *terms*. A concept is defined as a unit of thought, something which exists in the mind of a person. Relationships such as ‘broader’ ‘narrower’ and ‘related’ are considered to be concept-to-concept relationships, because they convey information about the structure of the concept-space being described. That is, they convey information about meaning.

Terms are labels for concepts. Term-to-term relationships are used to convey purely lexical information, for example a term can be an ‘abbreviation-for’ another term. Concept-to-Term relationships convey information about how a concept may be indicated (labelled) by various terms. Term-to-concept relationships convey information about how a term may imply a concept (meaning).

![Concept-based model](image)

Figure 3. Concept-based model.

Some example data in the concept-based view is shown below in figure 4.
The ILRT and LIMBER schemas implement a concept-based model. The ETB and FAO schemas are harder to classify, and are discussed further below.

The concept-based model is possibly a more precise description of the information contained in a thesaurus. It is explicit about the fact that a thesaurus consists of two distinct types of information, conceptual and lexical, and it separates these clearly. It has been argued that distinguishing between these types of information improves clarity, and failing to do so creates confusion (see for example [10]).

The term-based model translates to a more compact schema and data format. It is also the traditional approach, and more familiar to existing users of thesauri.

The FAO schema is an example of how not being explicit about what is a term and what is a concept can create confusion. The FAO Agrovoc data consists of resources typed as rdfs:Classes and resources typed as kaon:Labels. This would seem to suggest a concept-based model. However, the property 'uf' is allowed between the resources modelled as classes. The property 'uf' is usually used to link a preferred term to its non-preferred alternative, where both terms imply the same meaning. This suggests that although the resources of the agrovoc thesaurus have been types as rdfs:Classes, they are in fact terms.

2.2. Facets, categories and others grouping structures

In some thesauri terms or concepts are organised into fundamental categories, or facets. For example:

{objects}
- A001 . equipment
- A002 . . . fixed equipment
- A003 . . . portable equipment
- A004 . . . electrically-powered equipment
- A005 . . . human-powered equipment

{people}
- A100 . people
- A101 . . . infants
- A102 . . . children
- A103 . . . adults

{properties}
- A200 . properties
- A201 . . . chemical properties
- A202 . . . physical properties
- A203 optical properties
- A204 colour
- A205 contrast
- A206 luminance
- A207 luminosity
- A208 pressure
- A209 temperature

Other criteria may also be used to group concepts and terms. For example:

{objects}
- A001 . equipment
 - . . . <equipment by portability>
- A002 . . . fixed equipment
- A003 . . . portable equipment
 - . . . <equipment by power source>
- A004 . . . electrically-powered equipment
- A005 . . . human-powered equipment
 - . . . <equipment by application>
 - diving equipment (D001)
 - photographic equipment (H001)
 - physics equipment (P001)

{people}
- A100 . people
 - . . . <people by age>
- A101 . . . infants
- A102 . . . children
- A103 . . . adults
 - . . . <people by profession>
 - divers (D008)
 - models (people) (H024)
 - photographers (H025)
 - physicists (P005)

The CERES and ETB schemas support categories for terms, the others do not. None of the schemas allow other grouping structures to be represented.

Applying faceted classification and other grouping methods in a thesaurus introduces more useful information about the structure of the conceptual space being defined. A schema which supports these structures allows this information to be captured. In a schema which does not, this information is lost.

2.3. Extensible and customisable relationship sets

The ISO 2788:1986 [8] thesaurus standard defines a fixed set of term-to-term relationships. However, in practise these recommendations are
implented in a great variety of ways. In some thesauri, for example, the 'broader-term' relationship strictly implies class subsumption (is-a relationship). In others it is fuzzy, and can imply is-a, instance-of, part-of, geographical part-of etc. For example, in the thesaurus data given in section 2.1, 'AIDS' is an instance of 'immune disorders', 'air' is a part of 'environment', and 'air pollution' is a sub-type of 'pollution', yet all these relationships are modelled as 'BT'. Other thesauri use a more precisely defined set of relationships, BTG (broader-term generic), BTI (broader-term instantive) and BTP (broader-term partitive). In some thesauri the part-of relationship is modelled as BT/NT, in others as RT. Other relationships are also found, for example RBT (related broader-term) and RNT (related narrower-term).

There are two points here. First, none of the schemas explicitly defines the precise meaning of the relationships they use. Most include a property which they label 'broader' or 'BT', but in practice 'BT' means different things in different thesauri. Hence there is possibility for errors of meaning to be introduced when every relationship from every thesaurus labelled as 'BT' is encoded using the same RDF property. The extent to which the exact meaning and intended use of a relationship is defined within a schema therefore reflects the extent to which errors of ambiguity and meaning can be eliminated, and richer semantic constructs can be preserved.

Secondly, a schema that supports customization and/or extension of its relationship set can accommodate more thesauri than one which offers only a fixed set of relationships. Given the variability found, it has been argued that such flexibility is an essential feature of a representation format, although this discussion was in relation to XML formats (see [12]).

The Limber schema supports an extensible relationship set by defining high level properties 'ConceptRelation', 'ConceptEquivalence' and 'indicatedBy'. All other relationships are subproperties of these three. Thus there is room for extending or customising the given relationship set.

![Figure 7. LIMBER extensible property set.](image)

![Figure 8. Node model with relationship typing.](image)

However the ETB schema does not in fact allow flexibility in this way, as the properties linking a Term (MTNode) to a Relationship Node (RNode) (which correspond to the property labelled 'relation' in the above diagram) are not generic, and all imply fixed relationship types. For example, in notation 3 format:

```xml
<thes:Term rdf:type etb:MTNode;
etb:BT thes:aRelationNode.
<thes:aRelationNode rdf:type etb:RNode;
etb:relation 'broader';
etb:RN thes:anotherTerm.
```

![Figure 9. Illustration of ETB schema use.](image)

All other schemas implement a fixed set of relationships, with no mechanism for extension or customisation.

2.4. Multilingual data [^back to contents]

The LIMBER, ILRT, FAO, ETB schemas support multilingual data. Each of these schemas models multilingual data in a different way.

Comparing the two concept-based schemas (LIMBER, ILRT) raises a very interesting philosophical question. The ILRT schema allows terms to have a language property. The LIMBER schema allows concepts to have a language property. In doing so, the LIMBER schema models all concepts as being embedded in a particular

[^back to contents]:

[^1]:
language; there can be no language independent concepts. Conversely, the ILRT models all concepts as being language independent; there is no mechanism for stating that a concept is language specific. The extent to which ‘concepts’ (human thought constructs) are independent of language is an open question.

A more practical consideration is whether the schema supports non-exact equivalence relationships between concepts or terms. ISO 5964:1985 defines four types of multilingual equivalence: exact, inexact, partial and one-to-many. The LIMBER schema supports non-exact equivalence, with properties defined for each of the ISO 5964 equivalence types. All other schemas assume that multilingual equivalents are exact, and have no mechanism for expressing other types of equivalence.

By supporting non-exact equivalence types, a schema allows the representation of more information. Subtle differences of meaning between languages can be captured. By not doing so, these language differences are lost. However, many thesauri (for example 13) only contain exact equivalences, or the equivalences are assumed to be close enough to exact for practical purposes. By implicitly assuming all equivalence to be exact, a schema results in a more compact data encoding.

2.5. Inter-thesaurus mapping - This theme refers to whether or not a schema allows terms or concepts from different thesauri to be mapped to each other.

Only the LIMBER schema has an explicit mechanism for this. Here the equivalence properties used for multilingual mappings may also be used for inter-thesaurus mappings. This also allows non-exact mappings. No other schema has explicit mechanism for this, if mappings are made they would have to be using RT, BT, NT.

Allowing inter-thesaurus mapping is highly desirable, especially in the situation where the thesaurus is being used to organise information on the web. Different communities may use different but overlapping thesaurus, and allowing these to be related permits search across collections. There has been criticism, however, in relation to using the ISO 5964:1985 equivalence types for inter-thesaurus mapping. In particular, the partial equivalence relationship does not specify which is the broader and which is the narrower of the pair of terms/concepts being compared. Doerr uses set based operations and boolean combinators to equate concepts between thesauri. He also produces a system for mapping that ensures recall across collections, where the thesaurus is being applied for information retrieval applications.

2.6. Relationships as nodes or arcs - This theme refers to whether the schema models the relationships between thesaurus entities as an arc in the RDF graph, or as a node. The node and arc approaches are illustrated below.

![Figure 10. Arc model.](image10)

The ETB schema uses the node approach. All others model relationships as arcs.

The arc approach is most intuitive, and also most compact, with each relationship using a single statement (path length 1). The node approach requires at least two statements (path length of 2). However, the node approach means that every relationship gets its own URI. Statements can then be made about each individual relationship. A similar thing could be done via reification if the arc approach is taken. However reified statements make visual interpretation of the data much more difficult.

2.7. The sub-class approach - The FAO agrovoc schema models all terms as rdfs:classes. In so doing, the rdfs:subClassOf property is re-used to declare hierarchical relationships in the thesaurus.

To re-use properties from other schemas promotes interoperability. Also, using rdfs:Class and rdfs:subClassOf gives us a clue as to how a thesaurus may be mapped or migrated to an ontology, or other conceptual systems. However there is a danger of semantic inaccuracy and ambiguity. In many thesaurus the terms/concepts are not in fact classes, for example, ‘AIDS’ is not a class, but is an instance of the class of ‘immune disorders’. So to declare all terms in a thesaurus to be an rdfs:Class would be semantically inaccurate. Secondly the rdfs:subClassOf property implies a specific meaning, that of class subsumption. However, as stated above, the hierarchical relations of many thesauri have a different meaning. Therefore, compressing all hierarchical relationships into the rdfs:subClassOf property would create lots of false information.
2.8. RDFS, DAML or OWL - This theme refers to whether the schema use RDFS, DAML+OIL or OWL to define the data model.

The DRC schema is defined as a DAML+OIL ontology. All the other schemas are defined using RDFS.

Using DAML+OIL or OWL allows the definition of specific constraints on the data model. For example, one could state that every Concept must have one and only one property defining the preferred term. Thus there is possibility for stricter validation checks of data.

In DAML+OIL or OWL properties can be defined as being symmetric, inverse and transitive. The ‘broader’ and ‘narrower’ relationships of a traditional thesaurus are indeed transitive, and each other’s inverse, and the ‘related’ relationships are usually symmetric. When these have been expressed as so in an ontology, there is the possibility of using generic tools to obtain for example the transitive closure of all broader or narrower terms from a given term.

There is also the possibility to automatically infer additional facts from partial data.

RDFS allows greater flexibility, and this may be an advantage. For example, OWL lite and OWL DL do not allow a class to be also an instance, but this kind of meta-modelling may be very useful for thesaurus data. Also tool support for RDFS is perhaps at this stage more mature.

2.9. RDF implementation issues - Several of the schemas introduce their own typing mechanism. For example, the ILRT schema has the ‘termUsageValue’ property, to specify whether a term is preferred or not. The LIMBER schema has a scopeNoteType property to define the type of a ScopeNote. The ETB schema has three independent typing properties, one for each of the MTNode, UNode and RNode classes.

RDF has an inherent typing mechanism. To re-use this mechanism promotes interoperability and allows processing by generic tools. Introducing new typing mechanisms does the opposite.

Another implementation issue involves constraining property values to typed resources wherever possible. For example, the value of the ‘relation’ property in the ETB schema is expected to be a literal, with value ‘broader’ ‘narrower’ or ‘related’. Where literals are used, typing errors will create errors in the data. In contrast, the ILRT schema has the ‘termUsage’ property, which has a range constrained to resources of type ‘termUsageValue’.

2.10. Versioning, depreciation and change management - A thesaurus is expected to change and evolve over time. Therefore, some mechanism for representing the depreciation and replacement of entities within a thesaurus is a desirable property of a schema. However, none of the approaches to date offer such a feature.

2.11. Definitions, explanations and scope notes - In a traditional thesaurus, the meaning of a descriptor is primarily inferred from its position in the term hierarchy. Where this is not obvious, a scope note may be added, which is a piece of text that in some way clarifies the meaning and intended use of the descriptor. The DRC and FAO schema do not provide support for scope notes, all the other schemas do.

In terminology standards closely related to thesauri, the exact meaning of a concept may be described in a number of ways. For every concept there may be a precise formal definition, an example of its use, a clarifying statement (equivalent to scope note), in addition to several other features. In scientific thesauri, a concept may be associated with an equation, or some units.

Supporting these features may be highly desirable. For example, if a thesaurus is concept-based, and every concept has a definition, then the thesaurus is also a dictionary. Or if a thesaurus is concept based, and many concepts have descriptions, examples, images and/or other multimedia associated, then the thesaurus is also a teaching concept map.

3. Conclusions

This document has discussed themes relating to the design of RDF-based systems for encoding thesaurus data. From this discussion it is possible to extract the following requirements for a thesaurus representation system that will allow thesaurus data to become a part of the semantic web. Such a system will:

- Accurately capture the rich semantic information contained by a thesaurus.
- Accomodate variations in thesaurus structure, semantics and usage.
- Interoperate with existing RDF-based systems for knowledge organisation and representation.
- Support definition of mapping relations between thesauri.
- Provide clear and systematic approach to multilingual data.
- Provide clear and systematic approach to the representation of change and evolution in a thesaurus.
- Employ extensible design patterns to promote adaptability and re-use.

Further deliverables in this workpackage will approach the design and development of a system for thesaurus data representation using RDF.

4. Overview of the schemas -

In this section each of the schemas is presented as a schema summary table. These tables may be interpreted as follows.

- The classes of the schema are in the first column. If a class is indented relative to the one above, it is a subclass of the above class.
- The properties of the schema are in the second column. The properties are grouped according to their domain (i.e. all properties of a class appear next to it). If a property is indented relative to the one above, it is a subproperty of the above property.
- The range of each property is given in the third column.
- Instances (typed resources) when present appear in the fourth column.
Table 1. Limber schema summary.

<table>
<thead>
<tr>
<th>Class</th>
<th>Property</th>
<th>Range</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThesaurusObject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ClassificationCode</td>
<td>rdfs:Literal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inLanguageOfC</td>
<td>LanguageCode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>isIndicatedBy</td>
<td>Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PreferredTerm</td>
<td>Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UsedFor</td>
<td>Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ConceptRelation</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BroaderConcept</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NarrowerConcept</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TopOfHierarchy</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>isRelatedTo</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ConceptEquivalence</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>InexactEquivalent</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PartialEquivalent</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OneToManyEquivalent</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td>TopConcept</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>ScopeNote</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inLanguageOfSN</td>
<td>LanguageCode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hasTypeOf</td>
<td>ScopeNoteType</td>
<td></td>
</tr>
<tr>
<td>ScopeNoteType</td>
<td></td>
<td>General</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hierarchy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Translation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Editor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>History</td>
<td></td>
</tr>
<tr>
<td>LanguageCode</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. ILRT schema summary.

<table>
<thead>
<tr>
<th>Class</th>
<th>Property</th>
<th>Range</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>broaderConcept</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>relatedConcept</td>
<td>Concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>indicator</td>
<td>Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conceptCode</td>
<td>rdfs:Literal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>scope</td>
<td>ScopeNote</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>lang</td>
<td>rdfs:Literal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>termUsage</td>
<td>termUsageValue</td>
<td></td>
</tr>
<tr>
<td>ScopeNote</td>
<td></td>
<td>preferred</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>nonPreferred</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. CERES schema summary.

<table>
<thead>
<tr>
<th>Class</th>
<th>Property</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>HN</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td></td>
<td>Source</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>Category</td>
<td>descriptor</td>
<td>Descriptor</td>
</tr>
<tr>
<td>Class</td>
<td>Property</td>
<td>Range (restriction)</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Term</td>
<td>name</td>
<td>xsd:string</td>
</tr>
<tr>
<td></td>
<td>descriptorFor</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>preferredTermFor</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>USE</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>ACK</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>entryTermFor</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>UF</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>AF</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>BT</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>NT</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>Term</td>
</tr>
<tr>
<td>CALL-Term</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The properties of this schema have not been defined with a domain or range. DAML restrictions have been defined which restrict the allowed values for the range of each property at the term class.

Table 4. GEM schema summary.

<table>
<thead>
<tr>
<th>Class</th>
<th>Property</th>
<th>Range (restriction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>name</td>
<td>xsd:string</td>
</tr>
<tr>
<td></td>
<td>descriptorFor</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>preferredTermFor</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>USE</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>ACK</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>entryTermFor</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>UF</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>AF</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>BT</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>NT</td>
<td>Term</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>Term</td>
</tr>
<tr>
<td>CALL-Term</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. DRC ontology summary.

<table>
<thead>
<tr>
<th>Class</th>
<th>Property</th>
<th>Range</th>
<th>Range (restriction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rdfs:Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rt</td>
<td>rdfs:Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uf</td>
<td>rdfs:Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>use</td>
<td>rdfs:Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>value</td>
<td>rdfs:Literal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inL:language</td>
<td>rdfs:Resource</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. CERES schema summary.
In this schema every term is modelled as an rdfs:Class. The rdfs:subClassOf property is used to indicate hierarchical relationships between terms. 'Labels' are then declared, each of which 'references' one of the previously declared 'rdfs:Class'es (i.e. the terms).

<table>
<thead>
<tr>
<th>Class</th>
<th>Property</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETBT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>ID</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>Thes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thes</td>
<td>TmonoNodes</td>
<td>Tmono</td>
</tr>
<tr>
<td>Thes</td>
<td>Lang</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>Thes</td>
<td>MTNodes</td>
<td>MT</td>
</tr>
<tr>
<td>Thes</td>
<td>MT</td>
<td></td>
</tr>
<tr>
<td>Thes</td>
<td>Name</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>Thes</td>
<td>No</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>Thes</td>
<td>MTNodeNodes</td>
<td>MTNode</td>
</tr>
<tr>
<td>Thes</td>
<td>TopTerms</td>
<td>MTNode</td>
</tr>
<tr>
<td>MTNode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTNode</td>
<td>Title</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>MTNode</td>
<td>SN</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>MTNode</td>
<td>Type</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>MTNode</td>
<td>Date</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>MTNode</td>
<td>PN</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>MTNode</td>
<td>HN</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>MTNode</td>
<td>MTs</td>
<td>MT</td>
</tr>
<tr>
<td>MTNode</td>
<td>TT</td>
<td>MTNode</td>
</tr>
<tr>
<td>MTNode</td>
<td>RT</td>
<td>MTNode</td>
</tr>
<tr>
<td>MTNode</td>
<td>UF</td>
<td>MTNode</td>
</tr>
<tr>
<td>MTNode</td>
<td>USE</td>
<td>UNode</td>
</tr>
<tr>
<td>MTNode</td>
<td>BT</td>
<td>RNode</td>
</tr>
<tr>
<td>MTNode</td>
<td>NT</td>
<td>RNode</td>
</tr>
<tr>
<td>MTNode</td>
<td>RBT</td>
<td>RNode</td>
</tr>
<tr>
<td>MTNode</td>
<td>RNT</td>
<td>RNode</td>
</tr>
<tr>
<td>MTNode</td>
<td>EN</td>
<td>ENode</td>
</tr>
<tr>
<td>ENode</td>
<td>da</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>de</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>en</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>he</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>el</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>es</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>fi</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>fr</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>it</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>nl</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>pt</td>
<td>MTNode</td>
</tr>
<tr>
<td>ENode</td>
<td>sv</td>
<td>MTNode</td>
</tr>
<tr>
<td>UNode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNode</td>
<td>UType</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>UNode</td>
<td>UN</td>
<td>MTNode</td>
</tr>
<tr>
<td>RNode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNode</td>
<td>Relation</td>
<td>rdfs:Literal</td>
</tr>
<tr>
<td>RNode</td>
<td>RN</td>
<td>MTNode</td>
</tr>
</tbody>
</table>

Table 6. FAO Agrovoc schema summary.

Table 7. ETB schema summary.

References

Appendices: schemas and sample data

A1. LIMBER

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<rdf:RDF xml:lang="en">
 <rdfs:Class rdf:ID="ThesaurusObject">
 <rdfs:comment>All classes will be an element of the top-level class Thesaurus concept. This will allow us to put any common properties or constraints on all classes (if any).</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource">
 </rdfs:subClassOf>
 </rdfs:Class>
 <rdfs:Class rdf:ID="Concept">
 <rdfs:comment>A unique concept defined within a vocabulary scheme, such as a thesaurus or classification scheme. Instances can use the rdfs:isDefinedBy property with a vocabulary namespace as its value, to indicate the vocabulary to which the concept belongs.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#ThesaurusObject"/>
 <rdfs:comment>All classes will be an element of the top-level class Thesaurus concept. This will allow us to put any common properties or constraints on all classes (if any).</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 </rdfs:subClassOf>
 </rdfs:Class>
 <rdfs:Class rdf:ID="TopConcept">
 <rdfs:comment>A top concept of a thesaurus hierarchy; carries the hierarchy note.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Concept"/>
 <rdfs:subClassOf rdf:resource="#Term"/>
 <rdfs:comment>Instances of this class represent the written forms of Concepts, capturing a word or phrase that expresses the concept. The string is given by the rdf:value of Term.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#ThethesaurusObject"/>
 </rdfs:Class>
 <rdfs:Class rdf:ID="ScopeNote">
 <rdfs:comment>Provides a comment on the concept, for disambiguation, explanation etc. The string is given by the rdf:value of ScopeNote.</rdfs:comment>
 <rdfs:domain rdf:resource="#ThethesaurusObject"/>
 <rdfs:subClassOf rdf:resource="#ThethesaurusObject"/>
 <rdfs:subClassOf rdf:resource="#ThethesaurusObject"/>
 </rdfs:Class>
 <rdfs:Property rdf:ID="ClassificationCode">
 <rdfs:comment>The unique identifier of a concept.</rdfs:comment>
 <rdfs:domain rdf:resource="#Concept"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>
 </rdfs:Property>
 <rdfs:Property rdf:ID="inLanguageOfC">
 <rdfs:comment>The language of a term.</rdfs:comment>
 <rdfs:domain rdf:resource="#Concept"/>
 </rdfs:Property>
</rdf:RDF>
A2. ILRT

```xml
A2. ILRT
</rdf:RDF>
```
<rdfs:Class rdf:ID="Concept">
 <rdfs:comment>A unique concept defined within a thesaurus. Instances use the rdfs:isDefinedBy property with a vocabulary namespace as its value, to indicate the vocabulary to which the concept belongs.</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="Term">
 <rdfs:comment>Instances of this class represent the written forms of Concepts. The string is given by the rdf:value of Term.</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="ScopeNote">
 <rdfs:comment>The value of this optional resource is a scope note: a note attached to a term to indicate its meaning within an indexing language</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="TermUsageValue">
 <rdfs:comment>The value of the property: termUsage. It can take one of two values: 'preferred' or 'nonPreferred'.</rdfs:comment>
</rdfs:Class>

<rdfs:Property ID="broaderConcept">
 <rdfs:comment>This schema does not define a property 'narrowerConcept', but applications can assume the existence of a property narrowerConcept such that if:
 (broaderConcept,ConceptA,ConceptB), then
 (narrowerConcept,ConceptB,ConceptA) is true.
</rdfs:comment>
 <rdfs:domain rdf:resource="#Concept"/>
 <rdfs:range rdf:resource="#Concept"/>
</rdfs:Property>

<rdfs:Property ID="relatedConcept">
 <rdfs:comment>The relatedConcept is commutative, such that if:
 (relatedConcept,ConceptA,ConceptB), then
 (relatedConcept,ConceptB,ConceptA) is true.
</rdfs:comment>
 <rdfs:domain rdf:resource="#Concept"/>
 <rdfs:range rdf:resource="#Concept"/>
</rdfs:Property>
<rdf:Property ID="indicator">
 <rdfs:comment>A mandatory property of a Concept whose value is the Term instance representing a written form of the Concept. A Concept may have as an indicator more than one Term. A Term may only be an indicator of one Concept.</rdfs:comment>
 <rdfs:domain rdf:resource="#Concept"/>
 <rdfs:range rdf:resource="#Term"/>
</rdf:Property>

<rdf:Property ID="conceptCode">
 <rdfs:comment>An optional property for any code assigned to the thesaurus concepts.</rdfs:comment>
 <rdfs:domain rdf:resource="#Concept"/>
</rdf:Property>

<rdf:Property ID="scope">
 <rdfs:comment>This optional property has as its value an instance of the resource ScopeNote.</rdfs:comment>
 <rdfs:domain rdf:resource="#Concept"/>
 <rdfs:range rdf:resource="#ScopeNote"/>
</rdf:Property>

<rdf:Property ID="lang">
 <rdfs:comment>Optional property that can be used to give the language of a Term instance. The codes from "ISO 639:1988, Code for the representation of names of languages" should be used as the values for this property.</rdfs:comment>
 <rdfs:domain rdf:resource="#Term"/>
</rdf:Property>

<rdf:Property ID="termUsage">
 <rdfs:comment>This optional property indicates whether the Term instance is the 'preferred' or 'nonPreferred' textual expression of the Concept instance that is 'indicated' by the Term, for a given language.</rdfs:comment>
 <rdfs:domain rdf:resource="#Term"/>
 <rdfs:range rdf:resource="#TermUsageValue"/>
<table>
<thead>
<tr>
<th>Property ID</th>
<th>Label</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td>Broader Term</td>
<td>A descriptor to which another descriptor or multiple descriptors are subordinate in a hierarchy. The relationship indicator for this type of term in BT.</td>
</tr>
<tr>
<td>RT</td>
<td>Related Term</td>
<td>A descriptor that is associatively but not hierarchically linked to another description in a thesaurus. The relationship indicator for this type of descriptor is RT.</td>
</tr>
<tr>
<td>NT</td>
<td>Narrower Term</td>
<td>A descriptor that is subordinate to another descriptor or to multiple descriptors in a hierarchy. The relationship indicator for this type of term or term is NT.</td>
</tr>
<tr>
<td>USE</td>
<td>Use</td>
<td>Leads from a nonpreferred term to the descriptor.</td>
</tr>
<tr>
<td>UF</td>
<td>Use For</td>
<td>Records entry terms leading to the descriptor.</td>
</tr>
<tr>
<td>TT</td>
<td>Top Term</td>
<td>The broadest descriptor in a thesaurus hierarchy, sometimes indicated by the abbreviation TT.</td>
</tr>
<tr>
<td>HN</td>
<td>History Note</td>
<td>A note in a term record in a thesaurus that provides the date of entry of a descriptor as well as the history of modification to its scope, relationships, etc.</td>
</tr>
<tr>
<td>SCOPE</td>
<td>Scope Note</td>
<td>A note following a descriptor explaining its coverage, specialized usage, or rules for assigning it.</td>
</tr>
</tbody>
</table>
A5. DRC

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:daml="http://www.daml.org/2001/03/daml-ontology#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"
xmlns:dc="http://daml.org/ontology/Thesaurus/DC/3.2/daml-ontology#"
xmlns:o:"http://orlando.drc.com/daml/ontology/Thesaurus/CALL/3.2/daml-ontology#"
xmlns:cto="http://orlando.drc.com/daml/ontology/Thesaurus/CALL/3.2/daml-ontology#"
xmlns="http://orlando.drc.com/daml/ontology/Thesaurus/CALL/3.2/daml-ontology#">
 <!-- CALL Thesaurus Ontology -->
 <daml:Ontology rdf:about="#"/>
 <ves:VersionData>
 <ves:title>Call Thesaurus Ontology</ves:title>
 <ves:previous>http://orlando.drc.com/daml/ontology/Thesaurus/CALL/3.1/CALL-Thesaurus-ont.daml</ves:previous>
 <ves:location>http://orlando.drc.com/daml/ontology/Thesaurus/CALL/3.2/CALL-Thesaurus-ont.daml</ves:location>
 <ves:version>3.2</ves:version>
 <ves:email>TeamXML@drc.com</ves:email>
 <ves:creator>DRC</ves:creator>
 <ves:statusDate>2002-02-26</ves:statusDate>
 <ves:status>published</ves:status>
 </ves:VersionData>
 <daml:comment>Center for Army Lessons Learned Thesaurus Ontology</daml:comment>
 <daml:comment>This is an ontology of information about CALL Thesaurus Entries.</daml:comment>
</daml:Ontology>

<!-- Term Class -->
<call:Class rdf:ID="Term">
 <daml:label>Thesaurus Term</daml:label>
 <daml:comment>One or more words designating a concept.</daml:comment>
 <daml:subClassOf>
 <daml:Restriction daml:cardinality="1">'
 <daml:toClass rdf:resource="#name"/>
 </daml:Restriction>
 </daml:subClassOf>
 <daml:subClassOf>
 <daml:Restriction>
 <daml:toClass rdf:resource="#Term"/>
 </daml:Restriction>
 </daml:subClassOf>
 <daml:subClassOf>
 <daml:Restriction>
 <daml:toClass rdf:resource="#preferredTermFor"/>
 </daml:Restriction>
 </daml:subClassOf>
 <daml:subClassOf>
 <daml:Restriction>
 <daml:toClass rdf:resource="#entryTermFor"/>
 </daml:Restriction>
 </daml:subClassOf>
 <daml:subClassOf>
 <daml:Restriction>
 <daml:toClass rdf:resource="#BT"/>
 </daml:Restriction>
 </daml:subClassOf>
 <daml:subClassOf>
 <daml:Restriction>
 <daml:toClass rdf:resource="#NT"/>
 </daml:Restriction>
 </daml:subClassOf>
 <daml:subClassOf>
 <daml:Restriction>
 <daml:toClass rdf:resource="#RT"/>
 </daml:Restriction>
 </daml:subClassOf>
 <daml:subClassOf>
 <daml:Restriction>
 <daml:toClass rdf:resource="#USE"/>
 </daml:Restriction>
 </daml:subClassOf>
 <daml:subClassOf>
 <daml:Restriction>
 <daml:toClass rdf:resource="#AF"/>
 </daml:Restriction>
 </daml:subClassOf>
</call:Class>
</rdf:RDF>
A6. FAO - The FAO schema has been inferred from the agrovoc thesaurus data available from http://kaon.semanticweb.org/Members/ontologies/AGROVOC.zip. An extract from this data is presented below.
RDF Schema declaration for European Treasury Browser Multilingual Educational Thesaurus (ETBT)

version 0.4 http://www.w3.org/2000/01/rdf-schema#

The official URL for this document is http://eun.org/etb/thesaurus/elements/

Author:
Tin Read <tread@ieec.uned.es>

Changes:
version 0.2 - ask UNED...
 - first hacked version
version 0.3 - 2001-11-15
 - updated namespaces
 - added RBT and RNT as requested by INDIRE (see http://www.indire.it/)
version 0.4 - 2001-11-15
 - agreed with Antonio Ronca to use ISO639-1 for language encoding
 - added HEBREW support

<!DOCTYPE rdf:RDF >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY dc "http://purl.org/dc/elements/1.1/">
<!ENTITY dcq "http://purl.org/dc/terms/">
<!ENTITY daml-o "http://www.daml.org/2000/10/daml-ont#">
<!ENTITY etbthes "http://eun.org/etb/thesaurus/elements/">

<rdf:RDF
 xmlns:rdf="&rdf;"
 xmlns:rdfs="&rdfs;"
 xmlns:dc="&dc;"
 xmlns:dcq="&dcq;"
 xmlns:daml="&daml-o;">
 <rdf:Description rdf:about="&etbthes;">
 <dc:title>European School’s Treasury Browser Thesaurus (ETBT)</dc:title>
 <dc:publisher>tread@ieec.uned.es</dc:publisher>
 <dc:language>en</dc:language>
 <dc:description>European School’s Treasury Browser Thesaurus (ETBT)</dc:description>
 <dc:date>2001-12-06</dc:date>
 <daml:versionInfo>European Treasury Browser (ETB) Educational Multilingual Thesaurus, v0.3</daml:versionInfo>
 <rdfs:seeAlso rdf:resource = "http://www.uned.es" />
 <rdfs:seeAlso rdf:resource = "http://www.indire.it" />
 </rdf:Description>

<!-- *** Classes *** -->
 <rdfs:Class rdf:ID="ETBT">
 <rdfs:label xml:lang="en">ETBT</rdfs:label>
 <rdfs:comment xml:lang="en">European School’s Treasury Browser Encoding Scheme</rdfs:comment>
 <rdfs:isDefinedBy rdf:resource = "&etbthes;" />
 <rdf:type rdf:resource = "&dcq;SubjectScheme"/>
 </rdfs:Class>

 <rdfs:Class rdf:ID="Node">
 <rdfs:label xml:lang="en">Node</rdfs:label>
 <rdfs:comment xml:lang="en">The top class of the ETBT hierarchy</rdfs:comment>
 <rdfs:isDefinedBy rdf:resource = "&etbthes;" />
 </rdfs:Class>

 <rdfs:Class rdf:ID="Thes">
 <rdfs:label xml:lang="en">Thesaurus</rdfs:label>
 <rdfs:comment xml:lang="en">The main thesaurus container class of monolingual thesauri</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Node" />
 <rdfs:isDefinedBy rdf:resource = "&etbthes;" />
 <rdfs:seeAlso rdf:resource = "http://etbdemo.jrc.it/thesaurus/docs/Thes.gif" />
 </rdfs:Class>

 <rdfs:Class rdf:ID="Tmono">
 <rdfs:label xml:lang="en">Monolingual Thesaurus</rdfs:label>
 <rdfs:comment xml:lang="en">The monolingual thesaurus class containing different semantic-fields(categories) within the same language</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Node" />
 <rdfs:isDefinedBy rdf:resource = "&etbthes;" />
 <rdfs:seeAlso rdf:resource = "http://etbdemo.jrc.it/thesaurus/docs/Tmono-MT.gif" />
 </rdfs:Class>

 <rdfs:Class rdf:ID="MT">
 <rdfs:label xml:lang="en">Category</rdfs:label>
 <rdfs:comment xml:lang="en">A semantic-field or category class</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Node" />
 <rdfs:isDefinedBy rdf:resource = "&etbthes;" />
 <rdfs:seeAlso rdf:resource = "http://etbdemo.jrc.it/thesaurus/docs/MTCat.gif" />
 </rdfs:Class>

 <rdfs:Class rdf:ID="MTNode">
 <rdfs:label xml:lang="en">Term</rdfs:label>
 <rdfs:comment xml:lang="en">A term class representing either descriptor and non-descriptors</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Node" />
 <rdfs:isDefinedBy rdf:resource = "&etbthes;" />
 <rdfs:seeAlso rdf:resource = "http://etbdemo.jrc.it/thesaurus/docs/MTTerm.gif" />
 </rdfs:Class>

 <rdfs:Class rdf:ID="ENode">
 <rdfs:label xml:lang="en">Language Equivalents</rdfs:label>
 <rdfs:comment xml:lang="en">References to the complete set of unique multilingual MTNode equivalents</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Node" />
 <rdfs:isDefinedBy rdf:resource = "&etbthes;" />
 <rdfs:seeAlso rdf:resource = "http://etbdemo.jrc.it/thesaurus/docs/MTNode.gif" />
 </rdfs:Class>

</rdfs:RDF>
<rdfs:Class rdf:ID="UNode">
<rdfs:label xml:lang="en">Descriptors</rdfs:label>
<rdfs:comment xml:lang="en">A class containing a list of descriptors</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Node"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:seeAlso rdf:resource = "http://etbdemo.jrc.it/thesaurus/docs/MTNode.gif"/>
</rdfs:Class>

<rdfs:Class rdf:ID="RNode">
<rdfs:label xml:lang="en">Related</rdfs:label>
<rdfs:comment xml:lang="en">Class containing BT, NT, RT, RBT and RNT</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Node"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:seeAlso rdf:resource = "http://etbdemo.jrc.it/thesaurus/docs/MTNode.gif"/>
</rdfs:Class>

<!-- *** Properties of class Node *** -->
<rdf:Property rdf:ID="ID">
<rdfs:label xml:lang="en">ID</rdfs:label>
<rdfs:comment xml:lang="en">An identification label encoded as URI</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#Node"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;identifier"/>
</rdf:Property>

<!-- *** Properties of class Thes *** -->
<rdf:Property rdf:ID="TmonoNodes">
<rdfs:label xml:lang="en">TmonoNodes</rdfs:label>
<rdfs:comment xml:lang="en">References to a collection of mono-lingual objects</rdfs:comment>
<rdfs:range rdf:resource="#Tmono"/>
<rdfs:domain rdf:resource="#Thes"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;relation"/>
</rdf:Property>

<!-- *** Properties of class Tmono *** -->
<rdf:Property rdf:ID="Lang">
<rdfs:label xml:lang="en">Language</rdfs:label>
<rdfs:comment xml:lang="en">Language code for category or term encoded using ISO639-1</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#Tmono"/>
<rdfs:domain rdf:resource="#MTNode"/>
<rdfs:domain rdf:resource="#MT"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;language"/>
</rdf:Property>

<rdf:Property rdf:ID="MTNodes">
<rdfs:label xml:lang="en">MTNodes</rdfs:label>
<rdfs:comment xml:lang="en">References to the term objects which make up this category (note: this relation can only be present for descriptors)</rdfs:comment>
<rdfs:range rdf:resource="#MT"/>
<rdfs:domain rdf:resource="#Tmono"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;relation"/>
</rdf:Property>

<!-- *** Properties of class MT *** -->
<rdf:Property rdf:ID="Name">
<rdfs:label xml:lang="en">Category Name</rdfs:label>
<rdfs:comment xml:lang="en">The human-readable name of the category (which may or may not be the same as the top term)</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#MT"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;title"/>
</rdf:Property>

<rdf:Property rdf:ID="No">
<rdfs:label xml:lang="en">Category Number</rdfs:label>
<rdfs:comment xml:lang="en">The number of this category</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#MT"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;identifier"/>
</rdf:Property>

<rdf:Property rdf:ID="MTNodeNodes">
<rdfs:label xml:lang="en">MTNodeNodes</rdfs:label>
<rdfs:comment xml:lang="en">References to the term objects (descriptors) which make up this category (note: this relation can only be present for descriptors)</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#MT"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;relation"/>
</rdf:Property>

<rdf:Property rdf:ID="TopTerms">
<rdfs:label xml:lang="en">TopTerms</rdfs:label>
<rdfs:comment xml:lang="en">References to the term objects of the top terms of this category</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#MT"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;relation"/>
</rdf:Property>

<!-- *** Properties of class MTNode *** -->
<rdf:Property rdf:ID="Title">
<rdfs:label xml:lang="en">Title</rdfs:label>
<rdfs:comment xml:lang="en">The human-readable name of the category (which may or may not be the same as the top term)</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#MT"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;title"/>
</rdf:Property>

<rdf:Property rdf:ID="TMNodeNodes">
<rdfs:label xml:lang="en">TMNodeNodes</rdfs:label>
<rdfs:comment xml:lang="en">References to the term objects of the category (which may or may not be the same as the top term)</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#TH"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;relation"/>
</rdf:Property>

<rdf:Property rdf:ID="THNodes">
<rdfs:label xml:lang="en">THNodes</rdfs:label>
<rdfs:comment xml:lang="en">References to the term objects which make up this category (note: this relation can only be present for descriptors)</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#TH"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;relation"/>
</rdf:Property>

<!-- *** Properties of class TH *** -->
<rdf:Property rdf:ID="TH">
<rdfs:label xml:lang="en">Category Name</rdfs:label>
<rdfs:comment xml:lang="en">The human-readable name of the category</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#TH"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;title"/>
</rdf:Property>

<rdf:Property rdf:ID="No">
<rdfs:label xml:lang="en">Category Number</rdfs:label>
<rdfs:comment xml:lang="en">The number of this category</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#TH"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;identifier"/>
</rdf:Property>

<rdf:Property rdf:ID="THNodeNodes">
<rdfs:label xml:lang="en">THNodeNodes</rdfs:label>
<rdfs:comment xml:lang="en">References to the term objects (descriptors) which make up this category (note: this relation can only be present for descriptors)</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#TH"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;relation"/>
</rdf:Property>

<!-- *** Properties of class THNode *** -->
<rdf:Property rdf:ID="Title">
<rdfs:label xml:lang="en">Title</rdfs:label>
<rdfs:comment xml:lang="en">The human-readable name of the category</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#TH"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;title"/>
</rdf:Property>

<rdf:Property rdf:ID="TNodeNodes">
<rdfs:label xml:lang="en">TNodeNodes</rdfs:label>
<rdfs:comment xml:lang="en">References to the term objects which make up this category (note: this relation can only be present for descriptors)</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#T"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;relation"/>
</rdf:Property>

<!-- *** Properties of class T *** -->
<rdf:Property rdf:ID="T">
<rdfs:label xml:lang="en">Category Name</rdfs:label>
<rdfs:comment xml:lang="en">The human-readable name of the category</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>
<rdfs:domain rdf:resource="#T"/>
<rdfs:isDefinedBy rdf:resource = "&etbthes;"/>
<rdfs:subPropertyOf rdf:resource = "&dc;title"/>
</rdf:Property>

<rdf:Property rdf:ID="No">
<rdfs:label xml:lang="en">Category Number</rdfs:label>
<rdfs:comment xml:lang="en">The number of this category</rdfs:comment>
<rdfs:range rdf:resource="&rdfs;Literal"/>