Bringing the Full Power of Modern Hardware to the Open Web Platform

Mohammad Reza Haghighat
Senior Principal Engineer, Intel Corporation

October 29, 2014
Astounding JavaScript* Performance Improvements

Very efficient code generated by Firefox* JIT

LLVM Bitcode

Emscripten

JavaScript* (asm.js)

Achieving ~ 1.5x native running time via targeting asm.js†, a highly optimizable subset of JavaScript

JavaScript performance is approaching native speeds

Epic* Games Unreal Engine* 3

http://www.unrealengine.com/html5/

Over 1M lines of C/C++ code compiled to JavaScript* by Mozilla* and Epic
Microprocessor Trends – “Free Lunch” is over!

- **Growth** in processor clock rate **halted** around 2005
- **Transistors per processor** continues to **grow exponentially**

But, Moore’s Law continues with a shift to parallelism

†(c) 2013, James Reinders and Jim Jeffers: *Intel® Xeon Phi™ High-Performance Programming*, used with permission.
Parallelism is now Required to Benefit from Moore’s Law

SS: Sequential Scalar PS: Parallel Scalar PV: Parallel Vector

Monte Carlo European Options DP

LIBOR Market Model normalized

Higher is better

Open web client platform needs to be on Moore’s Law curve

Optimizing Web Runtimes for Parallelism

- HTML5 runtimes of today are not scalable with number of cores
- Need parallelism for both responsiveness and energy efficiency

Web runtimes need to be parallel end-to-end
Parallel Parsing and Compilation

A Concurrent Trace-based Just-In-Time Compiler for Single-threaded JavaScript

Jungwook Ha
Department of Computer Sciences
The University of Texas at Austin
habals@cs.utexas.edu

Mohammad R. Haghhighat
Software Solution Group
Intel Corporation
mhaighgh@intel.com

Shengnan Cong
Software Solution Group
Intel Corporation
shengnan.cong@intel.com

Kathryn S. McKinley
Department of Computer Sciences
The University of Texas at Austin
mckinley@cs.utexas.edu

PESPMA 2009

Bootstrap: 4 threads
Launch: 1 thread

Epic* Citadel* profile on Firefox*

Cycle Breakdown

- js::compile
- gfx::compile
- os::others
- js::parse
- js::others
- browser::others
- os::mem
- js::jitted
- gfx::exec

Background JIT compilers now in Chrome*, Firefox, Internet Explorer*, Safari*
SIMD – Single Instruction, Multiple Data

Scalar Operation

A_x	+	B_x	=	C_x
A_y	+	B_y	=	C_y
A_z	+	B_z	=	C_z
A_w	+	B_w	=	C_w

SIMD Operation of Vector Length 4†

\[
\begin{align*}
A_x + B_x &= C_x \\
A_y + B_y &= C_y \\
A_z + B_z &= C_z \\
A_w + B_w &= C_w
\end{align*}
\]

SIMD operations deliver great performance & power efficiency

† Intel® Architecture currently has SIMD operations of vector length 4, 8, 16
Bringing SIMD to JavaScript

Collaborators: Intel, Mozilla*, Google*, Microsoft*, ARM*, ...

Authors: Google's John McCutchan and Intel's Peter Jensen

Polyfill API: https://github.com/johnmcccutchan/ecmascript_simd
float32x4, int32x4, Float32x4Array, Int32x4Array

```javascript
var a = SIMD.float32x4 (1.0, 2.0, 3.0, 4.0);
var b = SIMD.float32x4 (5.0, 6.0, 7.0, 8.0);
var c = SIMD.float32x4.add (a, b);
```

Constructors: float32x4(x,y,z,w) float32x4.splat(s) float32x4.zero()

Operations: abs, neg, add, sub, mul, div, clamp, min, max, reciprocal, reciprocalSqrt, scale, sqrt, shuffle, shuffleMix, equal, notEqual, lessThan, greaterThan, withX, withY ...

Status: In Firefox* Nightly, prototyped in Chromium*, on IEBlog roadmap£

1st stage approval for inclusion in ES7 by TC39†

function mandelx4(c_re4, c_im4) {
 var z_re4 = c_re4;
 var z_im4 = c_im4;
 var four4 = SIMD.float32x4.splat (4.0);
 var two4 = SIMD.float32x4.splat (2.0);
 var count4 = SIMD.int32x4.splat (0);
 var one4 = SIMD.int32x4.splat (1);

 for (var i = 0; i < max_iterations; ++i) {
 var z_re24 = SIMD.float32x4.mul (z_re4, z_re4);
 var z_im24 = SIMD.float32x4.mul (z_im4, z_im4);

 var mi4 = SIMD.float32x4.lessThanOrEqual (SIMD.float32x4.add (z_re24, z_im24), four4);
 // if all 4 values are greater than 4.0, there's no reason to continue
 if (mi4.signMask === 0x00) {
 break;
 }

 var new_re4 = SIMD.float32x4.sub (z_re24, z_im24);
 var new_im4 = SIMD.float32x4.mul (SIMD.float32x4.mul (two4, z_re4), z_im4);
 z_re4 = SIMD.float32x4.add (c_re4, new_re4);
 z_im4 = SIMD.float32x4.add (c_im4, new_im4);
 count4 = SIMD.int32x4.add (count4, SIMD.int32x4.add (mi4, one4));
 }
 return count4;
}
Combining SIMD and Higher-Level Parallelism

WW: Number of WebWorkers

SIMD speedup is nicely multiplied by WebWorkers†

† Source: Intel® Peter Jensen : https://github.com/PeterJensen/
SIMD.JS demos: http://peterjensen.github.io/idf2014-simd
SIMD Speedups on Chromium*

SIMD x-times faster than non-SIMD

Theoretical speedup limit is 4

- 3rd Generation Intel® Core™ i7 processor (3667U)@ 2.00 GHz, 32-bit, Ubuntu* 13
- 3rd Generation Intel® Core™ i7 processor (3667U)@ 2.00 GHz, 64-bit, Ubuntu* 13
- Intel® Atom™ processor Z3770 @ 1.46GHz, Android* 4.4

Excellent early results while still focused on functionality

SIMD.JS benchmarks: https://github.com/johnmccutchan/ecmascript_simd/tree/master/src/benchmarks
Emscripten now targets SIMD.JS

Emscripten brings native SIMD apps to the open web platform
Toward Perceptual Computing†

Learning & Education Immersive Collaboration 3D Scanning and Sharing

Gaming Speech Out-of-reach Device Input

Devices sense and perceive user actions in a natural way

† Source: Intel® Perceptual Computing SDK: www.intel.com/software/perceptual
3D Cameras Make Perceptual Computing Accessible

Web Application

RGB Stream

Depth Stream

getUserMedia (WebRTC) API

Browser or HTML5 runtime

Media Capture Depth Stream Extensions are in W3C WG†

† W3C Media Capture Depth Stream Extensions: http://w3c.github.io/mediacapture-depth/
Toward Perceptual Web†

† 3D Camera WebRTC Demos, Courtesy of Intel® Ningxin Hu: https://www.youtube.com/channel/UC3eppo33tlz_EP7NWtZc0jQ
Demo Sources: Intel® Ningxin Hu: https://github.com/huningxin/depth_stream_examples
Web: The Most Viable Cross-Platform Technology Today

Rich Capabilities and Content

Big Data

Social Contextual Crowdsourced Sensors “Things”

Visual, Perceptual, Full HW Access

and the Ubiquitous Application Platform of the Future
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or
death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY
AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF
EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change
without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, Core, Atom, Xeon Phi, RealSense, Look Inside and the Intel logo are trademarks of Intel Corporation in the United States and other
countries.

*Other names and brands may be claimed as the property of others.
Copyright ©2014 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "plans," "believes," "seeks," "estimates," "may," "will," "should" and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be important factors that could cause actual results to differ materially from the company's expectations. Demand for Intel's products is highly variable and, in recent years, Intel has experienced declining orders in the traditional PC market segment. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions; consumer confidence or income levels; customer acceptance of Intel's and competitors' products; competitive and pricing pressures, including actions taken by competitors; supply constraints and other disruptions affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel operates in highly competitive industries and its operations have high costs that are either fixed or difficult to reduce in the short term. Intel's gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; and product manufacturing quality/yields. Variations in gross margin may also be caused by the timing of Intel product introductions and related expenses, including marketing expenses, and Intel's ability to respond quickly to technological developments and to introduce new products or incorporate new features into existing products, which may result in restructuring and asset impairment charges. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by the timing of closing of acquisitions, divestitures and other significant transactions. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel's SEC filings. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel's ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent reports on Form 10-Q, Form 10-K and earnings release.