Adventures in Formal Methods at W3C: The π of Choreography

Charlton Barreto

W3C Technical Plenary

Cannes-Mandelieu, France

2006-March-01

Motivation

- WS-CDL Critical Success Factors
 - CSF-007
 - To be successful, a CDL description MUST be verifiable at runtime
 - CSF-008
 - To be successful, a CDL description MUST enable static verification of correctness properties

Why Formalism?

- To provide mechanisms for ensuring desirable properties of real systems (e.g. type checking, bisimulation, model checking)
 - <u>CSF-008</u> requires static type checking for behavioral types
- To give formal unambiguous semantics to WS-CDL so that we have a precise idea of behavior, offering guidelines for implementation
 - <u>CSF-007</u> requires formal semantics to ensure correct monitoring

Correctness

- What formalism can we use for this?
 - We need:
 - Mobility,
 - Concurrency,
 - Location,
 - Identity (of a conversation)
- Process Algebra provides the basis all of this with a few additions

Formalisms

Model	Completeness	Compositionality	Parallelism	Resources
Turing Machines		×	×	
Lambda			×	×
Petri Nets		×	V	
CCS			$\overline{\mathbf{V}}$	×
π			$\overline{\mathbf{V}}$	

π-calculus

- A program's state and it's "program pointer" are one and the same
- Completely does away with the representation of state
- It is easy to check for certain properties:
 - Deadlock
 - Compatibility
- Linear Typing to support safety/liveness properties in the presence of non-determinism & non-termination

π-calculus

Formally we have:

```
| ::= \sum iAi -> Bi: si < opi, ei, yi >. li \qquad (choice) \\ | A -> B : ch(s \sim). l \qquad (init) \\ | I | I \qquad (par) \\ | if e@A then I else I \qquad (if/then/else) \\ | (vs \sim) l \qquad (new) \\ | rec X. l \qquad (recursion) \\ | x@A := e. l \qquad (assign) \\ | X \qquad (recVar) \\ where e ::= v|x|f(e1, ...., ek).
```


Example

 Notice the condition in the conditional branch, x ≤ 100, is explicitly located at Buyer's.

Buyer \rightarrow Seller : $B2Sch \langle QuoteReject \rangle . 0 \}$

π-calculus

- We also have an endpoint calculus
 - Just as readable as before, but the point is...

References

- [1] Carbone, Honda, Yoshida,
 "Programming interaction with Types"
- [2] Kavantzas,
 "Aggregating Web Services: Choreography and WS-CDL"
- [3] Carbone, Honda, Yoshida, et. al.
 "A Theoretical Basis of Communication-Centred Concurrent Programming"
- [4] Milner, Parrow, Walker
 "A Calculus of Mobile Processes"

Resources

- W3C Web Services Choreography page: http://www.w3.org/2002/ws/chor
- This talk is linked from http://www.w3.org/Talks

